Researchers uncover hidden brain states that regulate performance and decision making

July 3, 2018 by Raymond Macdougall, National Institutes of Health
Researchers uncover hidden brain states that regulate performance and decision making
Researchers processed fMRI data Human Connectome Project scans that indicate activated brain regions (warm colors, from yellow to red deactivated brain regions (cool colors, blues) during working memory tasks. Credit: National Institutes of Health

Brain activity is driven by encounters with external stimuli and situations, simultaneously occurring with internal mental processes. A team of researchers from Stanford University, with funding from the NIH BRAIN Initiative, in part through the National Institute of Biomedical Imaging and Bioengineering (NIBIB), has discovered how the brain dynamically handles cognitive tasks while it also is engaged in internal mental processes.

"This study is an example of the importance of computational models in driving research and facilitating our understanding of the human brain," said Grace Peng, director of the NIBIB program in Computational Modeling, Simulation and Analysis. "The team developed a computational model to make fundamental findings that have never before been revealed about how our brain processes information at various levels during daily ."

In their study, published online June 27, 2018, in Nature Communications, the researchers used a novel computational model and methodology to identify unique patterns of dynamic brain circuit activity, or brain states, that corresponded with optimal conditions for cognition. They also uncovered the presence of transitional brain states when brain circuits switch in their dynamic functional configuration between different conditions.

"Previous studies assumed that if you asked the subject to do a particular task, such as a , that you would observe brain activity that is driven purely by the task," said senior author Vinod Menon, Ph.D., Rachel L. and Walter F. Nichols, M.D., Professor of Psychiatry, Neurology and Neuroscience at Stanford University. "We now think that a whole set of internal, or hidden, brain states can influence how you process tasks. Here, we identify hidden brain states and demonstrate for the first time that they influence human cognition and decision making in profound ways."

For their study, the researchers used data from 122 participants from the NIH-funded Human Connectome Project (HCP). The HCP includes only data from healthy adults, however, there is great variation in brain function and behavior between individuals. In two sessions of several minutes each, study participants performed a working memory task during functional magnetic resonance imaging (fMRI) that noninvasively captured images of their brain activity. Working memory is the ability to temporarily store and manipulate information in one's mind—for example, recalling a 10-digit number in reverse order—and is a critical day-to-day cognitive process. The fMRI brain scans captured images of in discrete regions and functional connections between regions during working memory that occur within frontal and parietal cortices of the brain.

The working memory exercise consisted of recalling pictures of faces, places, tools and body parts that appeared sequentially on a monitor. In the most difficult challenge—a two-back working memory task—the participant was required to recall what had been displayed two images prior to the current image. In an easier challenge—a zero-back task—the participant was shown an image as a cue and asked to indicate when that cue appeared amongst different consecutively displayed images. Researchers also conducted scans while participants viewed a blank frame, to establish a baseline.

The researchers developed probabilistic mathematical models of dynamic functional brain circuits, which enabled them to uncover hidden brain states that fluctuate over time. These models enabled the researchers to observe dynamic patterns of brain circuit activity during task performance, including changes in brain states during tasks, alignment of brain states at the outset of the task, fluctuations in brain states as participants performed tasks, and the effect on cognitive performance and decision making when a participant does not engage the appropriate brain state.

During the two-back working memory exercise, researchers identified dominant brain patterns that they called a high cognitive-load state. "The 2-back working memory condition is the most challenging," Menon said. "You have to keep the information in mind and constantly refresh, and update, and respond." said Menon

They similarly identified a low cognitive-load state associated with the zero-back task, and a fixation state associated with brain patterns during the baseline condition. Their computational analysis revealed that the more time spent in the high cognitive-load brain state while conducting two-back working memory exercises, the better a participant performed on that test. Time spent trying to perform the two-back task while in any other brain state caused lower performance.

"When you are doing the two-back task, you must engage a particular configuration of ," he said. "If you don't engage it, or if you don't engage it at the right time, your performance suffers. The way states are engaged has a big impact on how well a subject does the working memory task."

A further novel finding of the study is the indication of a transition state that the researchers inferred from the data. The team showed that the transition state plays an important role in working memory.

"We know that when you go from one task condition to another your brain state is not changing instantaneously; it takes time for systems to come online as you go from a low cognitive load to a high cognitive load," explained Menon. "The strength of the study is that we showed that the states we identify, the transitions between states, and the relationships of these same states to behavior is very consistent across multiple datasets."

The researchers also wanted to know whether the hidden brain states impact how well a participant will perform tasks. "For example, we asked whether performance would be negatively affected if you get distracted because you are thinking about something, and don't engage the brain systems and networks optimally."

Menon explained that there is an optimal brain state for each task condition and that failure to engage these states in a timely manner is associated with poorer working performance.

The study enabled researchers to understand dynamic features of human brain function that had not been uncovered before. The researchers now hope that their computational approach can be applied to study brain circuit mechanisms and failures in disorders such as ADHD, autism, and schizophrenia—psychiatric conditions that may be disorders of dynamic circuits.

Explore further: Changing activity in the ageing brain

More information: Jalil Taghia et al. Uncovering hidden brain state dynamics that regulate performance and decision-making during cognition, Nature Communications (2018). DOI: 10.1038/s41467-018-04723-6

Related Stories

Changing activity in the ageing brain

May 29, 2015
Normal ageing affects our ability to carry out complex cognitive tasks. But exactly how our brain functions change during this process is largely unknown. Now, researchers in Malaysia have demonstrated that ageing changes ...

Working memory positively associated with higher physical endurance and better cognitive function

December 5, 2017
Mount Sinai researchers have found a positive relationship between the brain network associated with working memory—the ability to store and process information relevant to the task at hand—and healthy traits such as ...

Brain activity at rest provides clue to intelligence

March 7, 2018
The ability of an adult to learn and to perform cognitive tests is directly linked to how active the brain is at rest, UNSW researchers have found.

Similar brain connectivity during rest and tasks linked to better mental performance

August 16, 2016
A brain on task differs from a brain at rest. But, how much it differs could depend on the cognitive ability of the person whose brain is being studied. New research published August 17 in The Journal of Neuroscience suggests ...

Estrogen alters memory circuit function in women with gene variant

April 25, 2017
Fluctuations in estrogen can trigger atypical functioning in a key brain memory circuit in women with a common version of a gene, NIMH scientists have discovered. Brain scans revealed altered circuit activity linked to changes ...

Workings of working memory revealed

June 8, 2015
Our understanding of how a key part of the human brain works may be wrong. That's the conclusion of a team at Oxford University's Centre for Human Brain Activity (OHBA), published in journal Trends in Cognitive Sciences.

Recommended for you

Sensitive babies become altruistic toddlers

September 25, 2018
Our responsiveness to seeing others in distress accounts for variability in helping behavior from early in development, according to a study published September 25 in the open-access journal PLOS Biology by Tobias Grossmann ...

Immune cell pruning of dopamine receptors may modulate behavioral changes in adolescence

September 25, 2018
A study by MassGeneral Hospital for Children (MGHfC) researchers finds that the immune cells of the brain called microglia play a crucial role in brain development during adolescence, but that role is different in males and ...

Scientists reverse a sensory impairment in mice with autism

September 25, 2018
Using a genetic technique that allows certain neurons in the brain to be switched on or off, UCLA scientists reversed a sensory impairment in mice with symptoms of autism, enabling them to learn a sensory task as quickly ...

Why it doesn't get dark when you blink

September 25, 2018
People blink every five seconds. During this brief moment, no light falls on the retina, yet people continue to observe a stable picture of the environment with no intervals of darkness. Caspar Schwiedrzik and Sandrin Sudmann, ...

Researchers identify new cause of brain bleeds

September 25, 2018
A team of researchers including UCI project scientist Rachita Sumbria, Ph.D. and UCI neurologist Mark J. Fisher, MD have provided, for the first time, evidence that blood deposits in the brain may not require a blood vessel ...

Lung inflammation from childhood asthma linked with later anxiety

September 25, 2018
Persistent lung inflammation may be one possible explanation for why having asthma during childhood increases your risk for developing anxiety later in life, according to Penn State researchers.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.