Visual perceptual skills are updated by process similar to memory reconsolidation, study finds

July 9, 2018 by Gillian Kiley  , Brown University
The research offers insights into how the brain learns and refines new skills. Credit: Jolygon

A new study shows that updating visual perceptual skills—which humans rely on to recognize what they see, including potential threats, and ignore unimportant background—is an active process with many similarities to the way they stabilize memories.

Published in Nature Human Behavior, the study led by Brown University researchers tested whether , observed in animals, occurs in humans and whether it impacts skill learning. In animals, when a new is formed, that memory is fragile until time passes and the memory is consolidated. When memories are recalled or reactivated, they become temporarily unstable and vulnerable to change until they become stable again, shortly afterward.

Using behavioral techniques and new brain imaging tools, the study provides evidence that memory reconsolidation takes place in humans and that it underlies an important skill—visual perceptual learning.

"We performed this study because it is controversial whether reactivation makes already consolidated memory fragile again and whether this occurs in humans," said Yuka Sasaki, a professor of cognitive, linguistic and psychological science at Brown. "If such reactivation and reconsolidation are true functions of the brain, they should also occur in human vision."

Sasaki and her colleagues, including Takeo Watanabe, a professor of cognitive and linguistic science at Brown, trained study participants to recognize a blurred-stripe image, called a Gabor stimulus, as distinct from random dots. The next day, subjects were briefly tested to recall the skill they learned. They were then trained to find a new Gabor stimulus whose position was the same as the original one but whose orientation was different, either immediately afterwards or 3.5 hours later. On the third day, subjects were asked to practice finding the original Gabor stimulus.

They found that the subjects who learned the altered Gabor stimulus immediately after looking at the original Gabor stimulus had significant trouble finding the original blurred stripe, suggesting that the reactivated memory was vulnerable to interference from new learning.

But the subjects who had an interval of 3.5 hours between practicing the original test and the altered Gabor stimuli performed much better. This suggests that the subjects who had more time for their memories to reconsolidate were better able to cement their visual perceptual learning.

These results reveal two important findings, the researchers said: Visual perceptual learning can undergo reconsolidation. And the reconsolidation window closes sometime before 3.5 hours after the initial recall. The results also suggest that consolidation and reconsolidation have similar influences on behavior.

Sasaki and her colleagues also wanted to discover whether reconsolidation is underpinned by the same changes in brain activity. They used magnetic resonance spectroscopy (MRS) to measure concentrations in the excitatory neurotransmitter glutamate and in the inhibitory neurotransmitter GABA during consolidation and reconsolidation.

A different group of participants again practiced the visual perception task or a control task that would not result in new learning. The next day, MRS was used to measure the visual area's excitatory/inhibitory ratio both before and after the recall test as well as 3.5 hours afterwards.

Immediately after memory reactivation, when the memory was unstable and changeable, there was a significant increase in the excitatory/inhibitory ratio (a decrease of inhibition compared to excitation). Importantly, once the reconsolidation window had closed and the memory was re-stabilized, the amount of excitation/inhibition returned to baseline levels. This suggests that the changeability of the old memory was driven by a decrease in inhibition, similar to the excitation/inhibition ratio for consolidation.

The researchers also investigated whether the consolidation and reconsolidation of learned skills takes place according to similar timelines. They trained participants in a visual perception learning task and re-tested their memory either 3.5 hours after learning (consolidation group) or 3.5 hours after a recall test the next day (reconsolidation group). They found that both groups showed similar accuracy in the task 3.5 hours following learning or reactivation. This led them to conclude that both consolidation and reconsolidation occur over a similar amount of time.

"This may explain why practice makes your skill and memory better, if you consider practice as a series of reactivations, increasing the level of plasticity again and again," Sasaki said.

By showing that visual brain areas are highly excitable following memory reactivation, Sasaki and her colleagues shed light on how new information is incorporated into the memory. And by providing evidence of the role of memory destabilization and reconsolidation in visual perceptual learning, the researchers offer insights into how the brain learns and refines new skills, keeping humans able to adapt in a changing world.

Explore further: Want to give your memory a boost?

More information: Ji Won Bang et al, Consolidation and reconsolidation share behavioural and neurochemical mechanisms, Nature Human Behaviour (2018). DOI: 10.1038/s41562-018-0366-8

Related Stories

Want to give your memory a boost?

May 17, 2018
(HealthDay)—Whether you're studying for an important exam or learning a new language, there's more proof that nonstop cramming sessions may not translate into the long-term memory retention you want.

Brief reactivations of visual memories are enough to complete a full learning curve, researchers say

September 13, 2017
A new Tel Aviv University study finds that brief memory reactivations can replace repeated extensive practice and training—commonly known as "practice makes perfect"—as a basis of procedural learning.

Scientists erase fear from the brain

September 20, 2012
Newly formed emotional memories can be erased from the human brain. This is shown by researchers from Uppsala University in a new study now being published by the academic journal Science. The findings may represent a breakthrough ...

Treating mental illness by changing memories of things past

August 12, 2014
In the novel À la recherche du temps perdu (translated into English as Remembrance of Things Past), Marcel Proust makes a compelling case that our identities and decisions are shaped in profound and ongoing ways by our memories.

Cueing newly learned information in sleep improves memory, and here's how

March 8, 2018
Scientists have long known that sleep plays an important role in the formation and retention of new memories. That process of memory consolidation is associated with sudden bursts of oscillatory brain activity, called sleep ...

Recommended for you

Scientists uncover the role of a protein in production and survival of myelin-forming cells

July 19, 2018
The nervous system is a complex organ that relies on a variety of biological players to ensure daily function of the human body. Myelin—a membrane produced by specialized glial cells—plays a critical role in protecting ...

Neurons can carry more than one signal at a time

July 18, 2018
Back in the early days of telecommunications, engineers devised a clever way to send multiple telephone calls through a single wire at the same time. Called time-division multiplexing, this technique rapidly switches between ...

Researchers solve mystery of how ALL enters the central nervous system

July 18, 2018
A deadly feature of acute lymphoblastic leukemia (ALL) is its invasion of the central nervous system.

Pregnancy history may be tied to Alzheimer's disease

July 18, 2018
A woman's history of pregnancy may affect her risk of Alzheimer's disease decades later, according to a study published in the July 18, 2018, online issue of Neurology, the medical journal of the American Academy of Neurology. ...

Forty percent of people have a fictional first memory, says study

July 17, 2018
Researchers have conducted one of the largest surveys of people's first memories, finding that nearly 40 per cent of people had a first memory which is fictional.

Protein found to be key component in irregularly excited brain cells

July 17, 2018
In a new study in mice, researchers have identified a key protein involved in the irregular brain cell activity seen in autism spectrum disorders and epilepsy. The protein, p53, is well-known in cancer biology as a tumor ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.