New 3D-printed device could help treat spinal cord injuries

August 9, 2018, University of Minnesota
University of Minnesota researchers developed a prototype of a 3D-printed device with living cells that could help spinal cord patients restore some function. The size of the device could be custom-printed to fit each patient's spinal cord. The patient's own cells would be printed on the guide to avoid rejection in the body. Credit: University of Minnesota

Engineers and medical researchers at the University of Minnesota have teamed up to create a groundbreaking 3-D-printed device that could someday help patients with long-term spinal cord injuries regain some function.

A 3-D-printed guide, made of silicone, serves as a platform for specialized cells that are then 3-D printed on top of it. The guide would be surgically implanted into the injured area of the spinal cord where it would serve as a type of "bridge" between living nerve cells above and below the area of injury. The hope is that this would help patients alleviate pain as well as regain some functions like control of muscles, bowel and bladder.

The research is published online today in Advanced Functional Materials, a peer-reviewed scientific journal.

"This is the first time anyone has been able to directly 3-D print neuronal stem cells derived from adult human cells on a 3-D-printed guide and have the cells differentiate into active nerve cells in the lab," said Michael McAlpine, Ph.D., a co-author of the study and University of Minnesota Benjamin Mayhugh Associate Professor of Mechanical Engineering in the University's College of Science and Engineering.

"This is a very exciting first step in developing a treatment to help people with ," said Ann Parr, M.D., Ph.D., a co-author of the study and University of Minnesota Medical School Assistant Professor in the Department of Neurosurgery and Stem Cell Institute. "Currently, there aren't any good, precise treatments for those with long-term spinal cord injuries."

There are currently about 285,000 people in the United States who suffer from spinal cord injuries, with about 17,000 new spinal cord injuries nationwide each year.

University of Minnesota engineers and medical researchers have created a groundbreaking 3D- printed device that could help patients with long-term spinal cord injuries regain some function. Neuronal stem cells derived from adult human cells were 3-D printed on a 3D-printed guide and the cells differentiated into active nerve cells in the lab. Credit: University of Minnesota

In this new process developed at the University of Minnesota over the last two years, researchers start with any kind of cell from an adult, such as a skin cell or blood cell. Using new bioengineering techniques, the medical researchers are able to reprogram the cells into neuronal stem cells. The engineers print these cells onto a silicone guide using a unique 3-D-printing technology in which the same 3-D printer is used to print both the guide and the cells. The guide keeps the cells alive and allows them to change into neurons. The team developed a prototype guide that would be surgically implanted into the damaged part of the spinal cord and help connect living cells on each side of the injury.

"Everything came together at the right time," Parr said. "We were able to use the latest cell bioengineering techniques developed in just the last few years and combine that with cutting-edge 3-D-printing techniques."

Even with the latest technology, developing the prototype guides wasn't easy.

This color-enhanced image shows living cells that survived the 3D-printing process. Neuronal stem cells derived from adult human cells were 3-D printed on a guide and the cells differentiated into active nerve cells in the lab. Credit: University of Minnesota
"3-D printing such delicate cells was very difficult," McAlpine said. "The hard part is keeping the cells happy and alive. We tested several different recipes in the printing process. The fact that we were able to keep about 75 percent of the alive during the 3-D-printing process and then have them turn into healthy neurons is pretty amazing."

If the next steps are successful, the payoff for this research could be life-changing for those who suffer from spinal cord injuries.

"We've found that relaying any signals across the could improve functions for the patients," Parr said. "There's a perception that people with spinal cord injuries will only be happy if they can walk again. In reality, most want simple things like bladder control or to be able to stop uncontrollable movements of their legs. These simple improvements in function could greatly improve their lives."

Explore further: Created line of spinal cord neural stem cells shows diverse promise

More information: Daeha Joung et al, 3D Printed Stem-Cell Derived Neural Progenitors Generate Spinal Cord Scaffolds, Advanced Functional Materials (2018). DOI: 10.1002/adfm.201801850

Related Stories

Created line of spinal cord neural stem cells shows diverse promise

August 6, 2018
Researchers at University of California San Diego School of Medicine report that they have successfully created spinal cord neural stem cells (NSCs) from human pluripotent stem cells (hPSCs) that differentiate into a diverse ...

Using donor stem cells to treat spinal cord injury

August 28, 2017
A new study in mice published in The Journal of Neuroscience details a potential therapeutic strategy that uses stem cells to promote recovery of motor activity after spinal cord injury.

Paraplegic rats walk and regain feeling after stem cell treatment

November 16, 2017
Engineered tissue containing human stem cells has allowed paraplegic rats to walk independently and regain sensory perception. The implanted rats also show some degree of healing in their spinal cords. The research, published ...

Spinal cord injury affects the heart

December 12, 2017
Spinal cord injury affects the heart, that's what research published in Experimental Physiology and carried out by researchers from University of British Columbia, Canada has found.

New literature review assesses benefits of stem cells for treating spinal cord injuries

April 29, 2016
Stem cell therapy is a rapidly evolving and promising treatment for spinal-cord injuries. According to a new literature review, published in the April issue of the Journal of the American Academy of Orthopedic Surgeons (JAAOS), ...

Promising therapeutic approach for spinal cord injuries

March 1, 2018
The healing ability of the central nervous system is very limited and injuries to the brain or spinal cord often result in permanent functional deficits. Researchers at Karolinska Institutet in Sweden report in the scientific ...

Recommended for you

Scientists chase mystery of how dogs process words

October 15, 2018
When some dogs hear their owners say "squirrel," they perk up, become agitated. They may even run to a window and look out of it. But what does the word mean to the dog? Does it mean, "Pay attention, something is happening?" ...

Sugar, a 'sweet' tool to understand brain injuries

October 15, 2018
Australian researchers have developed ground-breaking new technology which could prove crucial in treating brain injuries and have multiple other applications, including testing the success of cancer therapies.

Scientists examine how neuropathic pain responds to Metformin

October 15, 2018
Scientists seeking an effective treatment for one type of chronic pain believe a ubiquitous, generic diabetes medication might solve both the discomfort and the mental deficits that go with the pain.

Abnormal vision in childhood can affect brain functions

October 13, 2018
A research team has discovered that abnormal vision in childhood can affect the development of higher-level brain areas responsible for things such as attention.

Two seemingly opposing forces in the brain actually cooperate to enhance memory formation

October 12, 2018
The brain allows organisms to learn and adapt to their surroundings. It does this by literally changing the connections, or synapses, between neurons, strengthening meaningful patterns of neural activity in order to store ...

How the grid cell system of the brain maps mental spaces

October 12, 2018
It has long been known that so-called place cells in the human hippocampus are responsible for coding one's position in space. A related type of brain cell, called grid cells, encodes a variety of positions that are evenly ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.