Anticancer drugs delivered by a new drug delivery system reduce tumor size

August 8, 2018, Osaka University
Outline of the drug delivery system (DDS) created in this study. Credit: Osaka University

Cancer tissue cells are divided into two major groups: cancer cells and cancer stem cells (CSCs). CSCs are related to cancer progression and dissemination, so it's necessary to eradicate CSCs in order to cure cancer. However, because CSCs are resistant to chemotherapy and radiotherapy, cancer is refractory.

A research group from Osaka University, in collaboration with Tokyo Institute of Technology, had found that there were CD13 surface markers in hepatocellular carcinoma (HCC) stem cells. When CD13 inhibitor ubenimex is added to CSCs, HCC stem cause apoptosis (programmed cell death), becoming extinct. However, because CSCs only reside in part of tumor tissues, it's imperative to develop a method for delivering drugs in high concentration to target sites.

The researchers created a delivery system (DDS) using a poly(ethylene glycol)-poly(lysine) block copolymer-ubenimex conjugate (PEG-b-PLys(Ube)). The use of this DDS has enabled an increase in the concentration of ubenimex in target CSCs. In addition, combined use of standard anticancer drugs significantly decreased CSCs. (Figure 1) Their were published in Oncogene.

Lead author Masamitsu Konno says, "First, we developed a DDS to deliver highly concentrated ubenimex and then, another DDS in which 20 ubenimex molecules were bound with poly ()-poly(lysine) block copolymer conjugates."

Comparative testing: saline solution (control), block copolymer only, block copolymer and ubenimex are administered to mice with hepatic cancer. Days after drug administration and tumor growth in hepatic cancer mice show that hepatic cancer cells significantly reduce in mice that received block copolymer and ubenimex. Credit: Osaka University

Using this method, they performed intraperitoneal administration and intravenous injection of ubenimex in mice, finding that the tumor size was significantly reduced. (Figure 2) This shows that it has become possible to deliver ubenimex to CSCs in high concentration.

Next, the combined administration of ubenimex and existing anticancer drugs (luorouracil (5-FU), cisplatin (CDDP), and doxorubicin (DXR)) was performed, enhancing apoptosis in vitro synergistically in CSCs in mice.

Corresponding author Hideshi Ishii says, "Our research results will promote the application of drugs whose medical effects on CSCs were verified but there were challenges in their delivery to target sites, which will promote repositioning, i.e., the drugs will be used to treat different diseases. Block copolymers used in the DDS in this study can be easily produced and exhibit strong effects, allowing them to be used for the application of other drugs as well."

Explore further: Iron removal as a potential cancer therapy

More information: Reishi Toshiyama et al, Poly(ethylene glycol)–poly(lysine) block copolymer–ubenimex conjugate targets aminopeptidase N and exerts an antitumor effect in hepatocellular carcinoma stem cells, Oncogene (2018). DOI: 10.1038/s41388-018-0406-x

Related Stories

Iron removal as a potential cancer therapy

February 27, 2018
Researchers at Okayama University report in Oncotarget a promising method for targeting cancer stem cells that cause tumor growth and cancer relapse. The approach involves administering molecules that capture iron, an overload ...

Stemming the spread of cancer

September 21, 2012
Okayama University's Masaharu Seno and colleagues have demonstrated in vitro the development of cancer stem cells (CSCs) from a type of normal stem cell exposed to their hypothetical microenvironment of a tumor.

Targeting bladder cancer's Achilles heel: stem cells

January 24, 2018
Two different proteins work separately as well as synergistically to feed a small pool of stem cells that help bladder cancer resist chemotherapy, research led by a Johns Hopkins Kimmel Cancer Center scientist suggests. The ...

HDAC inhibitors show promise against cancer stem cells

October 3, 2016
A group of researchers, led by scientists at Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, has shown that histone deacetylase (HDAC) inhibitors have the potential to eliminate ...

Recommended for you

Healthy diets linked to better outcomes in colorectal cancer

October 20, 2018
Colorectal cancer patients who followed healthy diets had a lower risk of death from colorectal cancer and all causes, even those who improved their diets after being diagnosed, according to a new American Cancer Society ...

Scientists to improve cancer treatment effectiveness

October 19, 2018
Together with researchers from the University of Nantes and the University of Reims Champagne-Ardenne in France, experts from the National Research Nuclear University MEPhI have recently developed a quantum dot-based microarray ...

Why some cancers affect only young women

October 19, 2018
Among several forms of pancreatic cancer, one of them specifically affects women, often young. How is this possible, even though the pancreas is an organ with little exposure to sex hormones? This pancreatic cancer, known ...

Mutant cells colonize our tissues over our lifetime

October 18, 2018
By the time we reach middle age, more than half of the oesophagus in healthy people has been taken over by cells carrying mutations in cancer genes, scientists have uncovered. By studying normal oesophagus tissue, scientists ...

Study involving hundreds of patient samples may reveal new treatment options of leukemia

October 17, 2018
After more than five years and 672 patient samples, an OHSU research team has published the largest cancer dataset of its kind for a form of leukemia. The study, "Functional Genomic Landscape of Acute Myeloid Leukemia", published ...

A 150-year-old drug might improve radiation therapy for cancer

October 17, 2018
A drug first identified 150 years ago and used as a smooth-muscle relaxant might make tumors more sensitive to radiation therapy, according to a recent study led by researchers at The Ohio State University Comprehensive Cancer ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.