Cancer cells send out 'drones' to battle immune system from afar

August 8, 2018, Perelman School of Medicine at the University of Pennsylvania
Secretion of exosomes by tumor cells (lower right) to fight the T cells (upper left). Credit: The labs of Wei Guo, PhD, and Xiaowei Xu, MD, PhD, University of Pennsylvania.

Cancer cells are more than a lump of cells growing out of control; they participate in active combat with the immune system for their own survival. Being able to evade the immune system is a hallmark of cancer. Cancer cells release biological "drones" to assist in that fight—small vesicles called exosomes circulating in the blood and armed with proteins called PD-L1 that cause T cells to tire before they have a chance to reach the tumor and do battle, according to researchers from the University of Pennsylvania.

The work, published in the journal Nature, is a collaboration between Wei Guo, Ph.D., a professor of Biology in the School of Arts and Sciences, and Xiaowei Xu, MD, Ph.D., a professor of Pathology and Laboratory Medicine in the Perelman School of Medicine. While primarily focused on metastatic melanoma, the team found that breast and lung cancer also release the PD-L1-carrying exosomes.

The research offers a paradigm-shifting picture of how cancers take a systemic approach to suppressing the immune system. In addition, it also points to a new way to predict which will respond to anti-PD1 therapy that disrupts to fight tumors and a means of tracking the effectiveness of such therapies.

"Immunotherapies are life-saving for many patients with , but about 70 percent of these patients don't respond," said Guo. "These treatments are costly and have toxic side effects so it would be very helpful to know which patients are going to respond. Identification of a biomarker in the bloodstream could potentially help make early predictions about which patients will respond, and, later on, could offer patients and their doctors a way to monitor how well their treatment is working."

"Exosomes are tiny lipid-encapsulated vesicles with a diameter less than 1/100 of a . What we have found with these circulating exosomes, is truly remarkable," said Xu. "We collected blood samples from melanoma patients treated with anti-PD1 therapy. This type of liquid biopsy assay allows us to monitor -related immune suppression with time. "

One of the most successful innovations in cancer therapy has been the use of checkpoint inhibitor drugs, which are designed to block attempts by to suppress the immune system to allow tumors to thrive and spread. One of the primary targets for this class of drugs is PD-1, a protein on the surface of T cells. On tumor cells, they express a counterpart molecule called PD-L1, which interacts with the PD-1 protein on T cells, effectively turning off that cell's anti-cancer response. Blocking that interaction using checkpoint inhibitors reinvigorates T cells, allowing them to unleash their cancer-killing power on the tumor.

While it was known that cancer cells carried PD-L1 on their surface, in this new work, the team found that exosomes from human melanoma cells also carried PD-L1 on their surface. Exosomal PD-L1 can directly bind to and inhibit T cell functions. Identification of the exosomal PD-L1 secreted by provides a major update to the immune checkpoint mechanism, and offers novel insight into tumor immune evasion.

"Essentially exosomes secreted by melanoma cells are immunosuppressive." Guo said. "We propose a model in which these exosomes act like drones to fight against T cells in circulation, even before the T cells get near to the tumor." Since a single tumor cell is able to secrete many copies of exosomes, the interaction between the PD-L1 exosomes and T cells provides a systemic and highly effective means to suppress anti-tumor immunity in the whole body. This may explain why cancer patients might have weakened immune system.

Because exosomes circulate in the bloodstream, they present an accessible way of monitoring the cancer/T cell battle through a blood test, compared to the traditional more-invasive biopsy of tumors. After an acute phase of treatment, the researchers envision such a test as a way to monitor how well the drugs are keeping cancer in check.

By measuring pre-treatment levels of PD-L1, oncologists may be able to predict the extent of tumor burden in a patient and associate that with treatment outcome. In addition, a blood test could measure the effectiveness of a treatment, for example, levels of exosomal PD-L1 could indicate the level of T cell invigoration by immune checkpoint inhibitors.

"In the future, I think we will begin to think about cancers as a chronic disease, like diabetes," says Guo. "And just as diabetes patients use glucometers to measure their sugar levels, it's possible that monitoring PD-L1 and other biomarkers on the circulating exosomes could be a way for clinicians and to keep tabs on the treatments. It's another step toward precision and personalized medicine."

Explore further: Researchers find potential key to unlocking the immune system in pancreatic cancer

More information: Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response, Nature (2018). DOI: 10.1038/s41586-018-0392-8 , https://www.nature.com/articles/s41586-018-0392-8

Related Stories

Researchers find potential key to unlocking the immune system in pancreatic cancer

August 6, 2018
A University of North Carolina Lineberger Comprehensive Cancer Center study may provide insights into how to overcome barriers to using immune-based treatments for pancreatic cancer, the third most deadly cancer in the United ...

Researchers uncover new target to stop cancer growth

June 21, 2018
Researchers at the University of Wisconsin-Madison have discovered that a protein called Munc13-4 helps cancer cells secrete large numbers of exosomes—tiny, membrane-bound packages containing proteins and RNAs that stimulate ...

Repurposed drugs may halt the spread of cancer cells

July 11, 2018
For cancer cells to spread to other places in the body—or metastasize—they need to communicate with one another. One way they do this is through chemical messages delivered in exosomes, the molecules that carry information ...

Boosting cancer therapy with cross-dressed immune cells

January 22, 2018
Researchers at EPFL have created artificial molecules that can help the immune system to recognize and attack cancer tumors. The study is published in Nature Methods.

How the breast cancer cells transform normal cells into tumoral ones?

November 13, 2014
Researchers at the Bellvitge Biomedical Research Institute of Bellvitge, the Catalan Institute of Oncology and the University Hospital of Bellvitge have participated in an international study published in the journal Cancer ...

Recommended for you

Study involving hundreds of patient samples may reveal new treatment options of leukemia

October 17, 2018
After more than five years and 672 patient samples, an OHSU research team has published the largest cancer dataset of its kind for a form of leukemia. The study, "Functional Genomic Landscape of Acute Myeloid Leukemia", published ...

Loss of protein p53 helps cancer cells multiply in 'unfavourable' conditions

October 17, 2018
Researchers have discovered a novel consequence of loss of the tumour protein p53 that promotes cancer development, according to new findings in eLife.

New method uses just a drop of blood to monitor lung cancer treatment

October 17, 2018
Dr. Tasuku Honjo won the 2018 Nobel Prize in physiology or medicine for discovering the immune T-cell protein PD-1. This discovery led to a set of anti-cancer medications called checkpoint inhibitors, one of the first of ...

Gene screening technique helps identify genes involved in a fatty liver-associated liver cancer

October 17, 2018
With an estimated twenty-thousand protein-coding genes in the human genome, pinpointing a specific gene or pathway responsible for a particular disease can be like finding a needle in the proverbial haystack. This has certainly ...

Scientists zero in on ways to boost colorectal cancer screening

October 17, 2018
A comprehensive analysis by University of North Carolina Lineberger Comprehensive Cancer Center researchers evaluated more than 70 clinical studies to identify some of the most effective methods for boosting U.S. colorectal ...

Student develops microfluidics device to help scientists identify early genetic markers of cancer

October 16, 2018
As anyone who has played "Where's Waldo" knows, searching for a single item in a landscape filled with a mélange of characters and objects can be a challenge. Chrissy O'Keefe, a Ph.D. student in the Department of Biomedical ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.