New way to break cancer's vicious cycle

August 29, 2018, University of Toronto
cancer
Killer T cells surround a cancer cell. Credit: NIH

University of Toronto researchers have uncovered why some cancers grow faster than others. The team led by Liliana Attisano, Professor in U of T's Donnelly Centre for Cellular and Biomolecular Research, has identified a protein called NUAK2, which is produced by cancer cells to boost their proliferation and whose presence in tumours is associated with poor disease prognosis. Writing in the journal Nature Communications, the researchers show that blocking NUAK2 slows down cancer cell growth raising hopes that a drug could be developed to treat patients.

"We looked at and found that a subset of patients have high levels of NUAK2 in their tumours which also happened to be high-grade tumours," says Attisano, who is also a professor in U of T's Department of Biochemistry.

Mandeep Gill, a graduate student in Attisano's lab, first found NUAK2 while looking for a way to block the known cancer-promoting proteins called YAP and TAZ (YAP/TAZ). Highly active in many cancers, YAP/TAZ work by latching onto the DNA to switch on genes that promote . NUAK2 turned out to be one of the genes that was switched on by YAP/TAZ; and unexpectedly it was found to encode a protein that helps shuttle even more YAP/TAZ into the cell's nucleus, where the DNA is stored, to further bolster abnormal cell growth.

Because YAP/TAZ are active in many cancers, including the aggressive forms of breast and bladder cancer, the researchers wondered if NUAK2 too was elevated in tumour biopsies taken from patients with bladder cancer. They found that NUAK2 was present at high levels in some of the tumours and that those came from patients whose cancer progressed to a more aggressive type.

Fortunately, the flip side is that when NUAK2 is blocked, YAP/TAZ can no longer enter the nucleus. This keeps YAP/TAZ away from the DNA and breaks the vicious cycle by which cancer reinforces itself.

Blocking NUAK2 with drugs removes oncogenic YAP/TAZ from the nucleus and in doing so rpevents it from switching on cancer genes. Credit: Attisano lab, Donnelly Centre, University of Toronto.

YAP/TAZ belong to the so-called Hippo pathway, a network of proteins that are important for normal cell and tissue growth but which often goes haywire in . The pathway was named after its role in controlling organ size so that organs grow abnormally large, or "hippo-like", when the pathway breaks down.

Although the Hippo pathway, which normally keeps cell proliferation in check, is inactivated in many cancers, so far there was no good way to target it with drugs. The discovery of NUAK2 changes this.

By blocking NUAK2 protein, either by drugs or by muting the gene that encodes it, the researchers were able to slow down expansion of breast in the dish and to shrink breast tumours in mice, respectively. A similar approach could target high-grade tumours in patients.

"If you check the patient's tumour and if they have high levels of NUAK2 protein, we could maybe treat them with NUAK2 inhibitors."

In collaboration with Rima Al-awar, Director of Drug Discovery Program at the Ontario Institute for Cancer Research, Frank Sicheri and Jeff Wrana at the Lunenfeld Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Attisano is working to develop the anti-NUAK2 compound into a form in which it can be used on animals to further validate the target.

"The ultimate goal is to find a drug that would work on people" Attisano said.

Explore further: Breast cancer fuelled by mysterious Yin Yang protein

More information: Mandeep K. Gill et al, A feed forward loop enforces YAP/TAZ signaling during tumorigenesis, Nature Communications (2018). DOI: 10.1038/s41467-018-05939-2

Related Stories

Breast cancer fuelled by mysterious Yin Yang protein

July 23, 2018
Scientists have unveiled clues about a mysterious molecule called Yin Yang1—and revealed it may fuel tumour growth in breast cancer.

Study discovers proteins which suppress the growth of breast cancer tumors

June 12, 2017
Researchers at the University of Birmingham have found that a type of protein could hold the secret to suppressing the growth of breast cancer tumours.

Breast cancer: Discovery of a protein linked to metastasis

May 7, 2018
Jean-François Côté, a researcher at the Montreal Clinical Research Institute (IRCM) and professor at Université de Montréal's Faculty of Medicine, studies metastasis, the leading cause of cancer-related death. Recently, ...

New treatment for aggressive breast cancer

March 12, 2018
Approximately 10 to 15 percent of breast cancer cases do not respond to treatment with hormone therapy, which means that they are more aggressive and often recur. An international research team led by researchers at Lund ...

Potential therapy identified for aggressive breast cancer

January 25, 2018
The European Cancer Stem Cell Research Institute, based with Cardiff University, has repurposed a current cancer therapy, TRAIL, to find a new treatment for advanced cancers that are resistant to anti-hormone therapy.

New bowel cancer drug target discovered

October 17, 2017
Researchers at the Francis Crick Institute have discovered a new drug target for bowel cancer that is specific to tumour cells and therefore less toxic than conventional therapies.

Recommended for you

Sugar supplement slows tumor growth and can improve cancer treatment

November 21, 2018
Mannose sugar, a nutritional supplement, can both slow tumour growth and enhance the effects of chemotherapy in mice with multiple types of cancer.

New mechanism controlling the master cancer regulator uncovered

November 21, 2018
Who regulates the key regulator? The Research Center for Molecular Medicine of the Austrian Academy of Sciences reports online in the journal Science about a newly discovered mechanism by which RAS proteins, central to cancer ...

Researchers stop spread of cancer in mice by blocking specific molecules

November 21, 2018
Melanoma skin cancer tumors grow larger and are more likely to metastasize due to interactions between a pair of molecules, according to experiments in mice and human cells. The results may restore the potential for a type ...

'Druggable' cancer target found in pathway regulating organ size

November 20, 2018
It's known that cancer involves unchecked cell growth and that a biological pathway that regulates organ size, known at the Hippo pathway, is also involved in cancer. It's further known that a major player in this pathway, ...

A study suggests that epigenetic treatments could trigger the development of aggressive tumours

November 20, 2018
A study headed by the Institute for Research in Biomedicine (IRB Barcelona) and published in the journal Nature Cell Biology examined whether the opening of chromatin (a complex formed by DNA bound to proteins) is the factor ...

Redefining colorectal cancer subtypes

November 20, 2018
There is a long-standing belief that colorectal cancer (CRC), which causes some 50,000 deaths in the United States each year, can be categorized into distinct molecular subtypes. In a paper published recently in the journal Genome ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.