Diseased heart muscle cells have abnormally shortened telomeres, researchers find

August 27, 2018, Stanford University Medical Center
Human chromosomes (grey) capped by telomeres (white). Credit: PD-NASA; PD-USGOV-NASA

People with a form of heart disease called cardiomyopathy have abnormally short telomeres in heart muscle cells responsible for contraction, according to a new study by researchers at the Stanford University School of Medicine.

A is a DNA sequence that serves as a protective cap on the ends of chromosomes.

The finding dovetails with a previous study showing that people with Duchenne muscular dystrophy, a genetic muscle-wasting disease, also have short telomeres in their , or cardiomyocytes. These patients often die at an early age from .

Although it's not yet known whether the stunted telomeres directly affect the function of the cardiomyocytes or arise as a result of failure, the finding opens the door to an intriguing line of research and drug discovery. It also may one day allow researchers and clinicians to identify people at risk for heart failure due to cardiomyopathy.

"The shortening of telomeres in cardiomyocytes appears to be a reliable hallmark of cardiac failures that arise due to genetic defects, and it's very specific to that require the missing contractile proteins such as dystrophin, troponin T or myosin heavy chain, among others," said Helen Blau, Ph.D., professor of microbiology and immunology and member of the Stanford Cardiovascular Institute.

Blau, the Donald E. and Delia B. Baxter Foundation Professor and director of the Baxter Laboratory for Stem Cell Biology, is the senior author of the study, which will be published online Aug. 27 in Proceedings of the National Academy of Sciences. Alex Chang, Ph.D., an instructor of cardiovascular medicine and of microbiology and immunology, is the lead author.

Shortening with cell division

In most cells, telomeres naturally shorten each time the cell divides. But cardiomyocytes divide infrequently, and their telomere lengths remain relatively stable throughout one's life.

In humans, Duchenne muscular dystrophy, which is caused by a mutation in the dystrophin gene, is characterized by progressive muscle weakness and eventual death due to cardiac complications. In earlier work, Blau and her colleagues observed that although mice with the corresponding mutation in dystrophin displayed the muscle wasting symptoms, their hearts functioned normally. The researchers realized that a key difference between humans and mice is the length of each species' telomeres: Human telomeres are relatively short at 5-15 kilobases, but mice have telomeres approaching 40 kilobases. When the investigators introduced a second mutation in the mice that reduced to more closely match that of humans, the animals began to display the typical symptoms of the disease, including heart failure.

A subsequent study in the Blau lab found that, in mice, telomere shortening triggered a DNA-damage response that compromised the function of the cells' energy generators, or mitochondria. As a result, cardiomyocytes were unable to efficiently pump blood throughout the body.

"Because we found in a previous study that cardiomyocytes from boys who had died of Duchenne muscular dystrophy had telomeres that were about 50 percent shorter than those from individuals without the disease," Blau said, "we wondered whether people with other genetic heart conditions, such as cardiomyopathies, might also have cardiomyocytes with abnormally shortened telomeres." Blau and Chang collaborated with several other members of Stanford's Cardiovascular Institute to investigate the question.

A cardiomyopathy is a condition in which the heart is unusually large, thickened or stiff. This affects its ability to pump blood effectively. One out of every 500-2,500 people worldwide is affected, and cardiomyopathies are a leading cause for heart transplantation. Dilated cardiomyopathy occurs when the left ventricle is enlarged, while hypertrophic cardiomyopathy is caused by a thickening of the heart muscle.

Chang compared the telomere length in cardiomyocytes from 11 patients with dilated or hypertrophic cardiomyopathy due to genetic mutations with nine people who had died from causes unrelated to heart disease. He found that telomeres from the cardiomyopathy patients were about 25-40 percent shorter than those of the control subjects. In contrast, the telomere length in nonbeating heart cells of the blood vessels did not vary significantly between the two groups.

Chang saw similar results in cardiomyocytes generated from induced pluripotent stem cells: Those generated from people with cardiomyopathies had significantly shorter telomeres than those generated from unaffected relatives.

"Within 20 days we could see the telomere shortening happening in the laboratory-grown cardiomyocytes from diseased patients, suggesting this is a cell-intrinsic property," Blau said.

The ability to use iPS cell technology to generate affected also means that it should be possible to quickly and easily test for compounds or drugs that interfere with the telomere shortening with a view to finding drugs to abrogate the disease in humans, the researchers believe.

"Now we can study this phenomenon in the lab in real time and start to ask questions about cause and effect," Blau said. "We'd love to know, for example, how this shortening might impact the DNA damage response, mitochondrial dysfunction and cell-death pathways. It opens up a whole new line of investigation."

Explore further: DNA damage response links short telomeres, heart disorder in Duchenne muscular dystrophy

More information: Alex C. Y. Chang el al., "Telomere shortening is a hallmark of genetic cardiomyopathies," PNAS (2018). www.pnas.org/cgi/doi/10.1073/pnas.1714538115

Related Stories

DNA damage response links short telomeres, heart disorder in Duchenne muscular dystrophy

October 31, 2016
Progressively shortening telomeres—the protective caps on the end of chromosomes—may be responsible for the weakened, enlarged hearts that kill many sufferers of Duchenne muscular dystrophy, according to a study by researchers ...

Team finds that telomere length can have a direct correlation to heart failure in humans

September 7, 2017
Each cell in the average human body contains 23 pairs of chromosomes, with four telomeres on each pair. Telomeres cover the end of the chromosome, protecting it from deterioration or fusion with adjacent chromosomes, much ...

Mouse study links heart regeneration to telomere length

May 30, 2016
Researchers at the Spanish National Center for Cardiovascular Research have discovered that the ends of heart muscle cell chromosomes rapidly erode after birth, limiting the cells' ability to proliferate and replace damaged ...

Researchers find shortened telomeres linked to dysfunction in Duchenne muscular dystrophy

September 7, 2017
Researchers from the Perelman School of Medicine at the University of Pennsylvania have made a discovery about muscular dystrophy disorders that suggest new possibilities for treatment. In a study published today online in ...

Breakthrough could impact cancer, ageing and heart disease

July 20, 2018
A team of Sydney scientists has made a groundbreaking discovery in telomere biology, with implications for conditions ranging from cancer to ageing and heart disease. The research project was led by Dr. Tony Cesare, Head ...

Recommended for you

Gut hormone and brown fat interact to tell the brain it's time to stop eating

November 15, 2018
Researchers from Germany and Finland have shown that so-called "brown fat" interacts with the gut hormone secretin in mice to relay nutritional signals about fullness to the brain during a meal. The study, appearing November ...

Brain, muscle cells found lurking in kidney organoids grown in lab

November 15, 2018
Scientists hoping to develop better treatments for kidney disease have turned their attention to growing clusters of kidney cells in the lab. One day, so-called organoids—grown from human stem cells—may help repair damaged ...

DICE: Immune cell atlas goes live

November 15, 2018
Compare any two people's DNA and you will find millions of points where their genetic codes differ. Now, scientists at La Jolla Institute for Immunology (LJI) are sharing a trove of data that will be critical for deciphering ...

Researchers discover important connection between cells in the liver

November 15, 2018
University of Minnesota Medical School researchers have made a discovery which could lead to a new way of thinking about how disease pathogenesis in the liver is regulated, which is important for understanding the condition ...

Ashkenazi Jewish founder mutation identified for Leigh Syndrome

November 15, 2018
Over 30 years ago, Marsha and Allen Barnett lost their sons to a puzzling childhood disease that relentlessly attacked their nervous systems and sapped their energy. After five-year-old Chuckie died suddenly in 1981, doctors ...

Drug candidate may recover vocal abilities lost to ADNP syndrome

November 15, 2018
Activity-dependent neuroprotective protein syndrome (ADNP syndrome) is a rare genetic condition that causes developmental delays, intellectual disability and autism spectrum disorder symptoms in thousands of children worldwide. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.