Experimental drug takes aim at cancers associated with Epstein-Barr virus

August 22, 2018, American Society for Microbiology
This electron microscopic image of two Epstein Barr Virus virions (viral particles) shows round capsids—protein-encased genetic material—loosely surrounded by the membrane envelope. Credit: DOI: 10.1371/journal.pbio.0030430.g001

Epstein-Barr Virus (EBV) doesn't directly cause cancer, but infection with this common herpes virus brings an increased risk of some cancers, including fast-growing lymphomas. This week in mSphere, researchers report on a new drug that works by targeting EBV-positive tumors.

In experiments on mice, the inhibited tumor development and metastases for EBV-related lymphomas. The findings suggest the drug may be useful in treating malignancies in EBV-positive patients and have led to a phase I trial in that patient population.

The Epstein-Barr virus is so common that almost everyone in the United States has been infected by the time they reach their twenties. An infection can cause mononucleosis (the "kissing disease"), but many people remain asymptomatic their entire lives. An increased risk of other types of cancer, including nasopharyngeal and stomach cancers, has been associated with EBV infections.

"In certain circumstances the virus can contribute to cancer.," says the study's lead author, microbiologist Richard Longnecker at the Northwestern University Feinberg School of Medicine, in Chicago.

Infections by EBV are thought to promote the growth of B lymphocytes, resulting in lymphomas. Importantly, EBV encodes a protein called LMP2A (Latent Membrane Protein 2A) that can hijack the cell signaling mechanism of the B cells it infects. Longnecker, whose research focuses on understanding how viruses contribute to cancer, has been studying the protein since the late 1980s. His laboratory has found that LMP2A can both prevent apoptosis, or cell death, and drive the cell-division cycle, promoting cancer in murine models.

For the new study, Longnecker and his collaborators studied mice that had been genetically modified to express LMP2A protein in B cells that promoted lymphoma development. In treated mice, the drug, a called TAK-659, counteracted the cancer-promoting mechanisms of the LMP2A protein. The drug killed but left host cells unaffected. It also promoted apoptosis in tumor cells and stopped the spread of tumor into nearby bone marrow.

Based on previous preclinical studies conducted at Takeda Pharmaceuticals, which is developing TAK-659, the company launched three phase I clinical trials to test the safety of the drug in patients with some lymphomas, acute myelogenous leukemia, and some solid tumors. Those studies are recruiting. Based on the findings published this week in mSphere, which validated the drug's efficacy in EBV-positive lymphomas, the company added a cohort of EBV-positive patients to one of those trials.

The drug has promise both as a single agent and in combination with other cancer therapies, including immunotherapies, says Karuppiah Kannan, Global Program Leader for Takeda, which is based in Cambridge, Massachusetts. "It combines very well with checkpoint inhibitors," he says. Kannan says the new findings demonstrate the drug's efficacy can be tested not only among different types of , but more generally among those associated with EBV.

The findings published this week, says Kannan, show how good preclinical data can push research faster toward something that will help patients. "It's an example of how bench to bedside happens," he says. "Now the clinical data has to take us to the next step."

Explore further: Untangling how Epstein-Barr virus infects cells

Related Stories

Untangling how Epstein-Barr virus infects cells

January 11, 2018
A team led by scientists at Northwestern Medicine has discovered a new epithelial receptor for Epstein-Barr virus, according to a study published recently in Nature Microbiology.

A viral protein that helps EBV-infected B cells to escape human killer T cells

June 11, 2015
About 90% of adults worldwide are infected with Epstein-Barr virus, or EBV. The virus infects B cells (the white blood cells that make antibodies) and can contribute to B-cell-derived cancers, but in most people it remains ...

Scientists identify genes that could inform novel therapies for EBV-related cancers

March 20, 2018
VCU Massey Cancer Center researchers have identified two genes that are responsible for governing the replication of the Epstein-Barr virus, an infection that drives the growth of several types of cancer. The discovery could ...

Chimera viruses can help the fight against lymphomas

September 15, 2017
Researchers from Instituto de Medicina Molecular (iMM) Lisboa have created a chimera virus that allows the study of molecules to treat cancers caused by human herpes virus infection in mice models of disease.

Attacking lymphoma at the source

March 22, 2018
Non-Hodgkin lymphomas are cancers that affect white blood cells of the immune system called B-lymphocytes, or B cells. Like cells in all cancers, the B cells begin to grow out of control, creating tumors in the lymph nodes, ...

New insights into herpes virus could inform vaccine development

October 18, 2017
A team of scientists has discovered new insights into the mechanisms of Epstein-Barr virus (EBV) infection, as well as two antibodies that block the virus' entry into cells. The findings, published in Proceedings of the National ...

Recommended for you

New 'SLICE' tool can massively expand immune system's cancer-fighting repertoire

November 15, 2018
Immunotherapy can cure some cancers that until fairly recently were considered fatal. In addition to developing drugs that boost the immune system's cancer-fighting abilities, scientists are becoming expert at manipulating ...

Anti-malaria drugs have shown promise in treating cancer, and now researchers know why

November 15, 2018
Anti-malaria drugs known as chloroquines have been repurposed to treat cancer for decades, but until now no one knew exactly what the chloroquines were targeting when they attack a tumor. Now, researchers from the Abramson ...

Antibiotic prescribing influenced by team dynamics within hospitals

November 15, 2018
Antibiotic prescribing by doctors is influenced by team dynamics and cultures within hospitals.

Researchers identify a mechanism that fuels cancer cells' growth

November 14, 2018
Scientists at the UCLA Jonsson Comprehensive Cancer Center have identified sodium glucose transporter 2, or SGLT2, as a mechanism that lung cancer cells can utilize to obtain glucose, which is key to their survival and promotes ...

A new approach to detecting cancer earlier from blood tests: study

November 14, 2018
Cancer scientists led by principal investigator Dr. Daniel De Carvalho at Princess Margaret Cancer Centre have combined "liquid biopsy", epigenetic alterations and machine learning to develop a blood test to detect and classify ...

Discovery suggests new route to fight infection, disease

November 14, 2018
New research reveals how a single protein interferes with the immune system when exposed to the bacterium that causes Legionnaires' disease, findings that could have broad implications for development of medicines to fight ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.