Natural sugar defends against metabolic syndrome, in mice

August 23, 2018, Washington University School of Medicine
Mice fed a diet high in trans fats and cholesterol for 12 weeks show fatty deposits in the liver (red staining). A new study from Washington University School of Medicine in St. Louis shows that the natural sugar trehalose blocks glucose from getting into the liver and turns on a gene, Aloxe3, that improves insulin sensitivity and other measures of metabolic syndrome, including reducing such fatty liver deposits. Credit: Brian DeBosch

New research, in mice, indicates that a natural sugar called trehalose blocks glucose from the liver and activates a gene that boosts insulin sensitivity, reducing the chance of developing diabetes. Activating the gene also triggers an increase in calories burned, reduces fat accumulation and weight gain, and lessens measures of fats and cholesterol in the blood.

The findings, from researchers at Washington University School of Medicine in St. Louis, suggest new possibilities for treating metabolic syndrome, a cluster of related conditions that includes obesity, diabetes and .

The study is published Aug. 23 in JCI Insight.

While potential medicinal use of trehalose still requires considerable research, the investigators found that giving mice trehalose via drinking water resulted in on the animals' liver metabolism—similar to benefits that resulted from fasting. In fasting mice, the liver also turns on the same gene that improves the body's ability to use insulin.

"We learned that this gene, Aloxe3, improves insulin sensitivity in the same way that common diabetes drugs—called thiazolidinediones—improve insulin sensitivity," said Brian DeBosch, MD, Ph.D., an assistant professor of pediatrics. "And we showed that Aloxe3 activation in the liver is triggered by both trehalose and by fasting, possibly for the same reason: depriving the liver of glucose.

A new study from Washington University School of Medicine in St. Louis shows that the natural sugar trehalose blocks glucose from getting into the liver and turns on a gene, Aloxe3, that improves insulin sensitivity and other measures of metabolic syndrome, including reducing fatty liver disease. Mice fed a typical chow diet show a healthy liver (left panel). Mice fed a high-trans-fat, high-cholesterol diet for 12 weeks show large fatty deposits in the liver (red staining in middle panel). Mice fed the same high-trans-fat, high-cholesterol diet and that have the gene Aloxe3 turned on at high levels show smaller fatty deposits, suggesting protection from metabolic syndrome. Credit: Brian DeBosch

"In mice, this gene is turned on as part of what seems to be the normal fasting response. Our data suggest that fasting—or giving trehalose with a normal diet—triggers the liver to change the way it processes nutrients, in a beneficial way. And if glucose can be blocked from the liver with a drug, it may be possible to reap the benefits of fasting without strictly limiting food."

The researchers found that Aloxe3 in the liver—whether activated by fasting or trehalose—leads the mice not only to make better use of insulin, but to increase calorie burning, raise body temperature, reduce and —including fat deposits in the liver—and lessen measures of fats and cholesterol in the blood. Further, they found that mice fed an obesity-inducing diet and mice that eat freely and are genetically prone to obesity are protected from metabolic disease if given trehalose in their .

Studying the switched on in the livers of mice given trehalose, DeBosch and his colleagues became intrigued by Aloxe3, which typically is known for helping the skin maintain proper hydration in the body and had not been thought to have any role in the liver.

The researchers found that activating Aloxe3 in the mice given trehalose improves insulin sensitivity in a way that is similar to how thiazolidinediones work. Studying healthy given only water over a 48-hour period, they found that fasting, likewise, activates Aloxe3 in the . This activation could boost in the same way.

However, DeBosch said, trehalose may encounter enzymes in the digestive tract that break it apart, releasing its two glucose molecules, which would be counterproductive. The researchers investigated a similar sugar—lactotrehalose—they found has the same beneficial effects from triggering Aloxe3 but does not break apart as easily.

Explore further: Peptide improves glucose and insulin sensitivity, lowers weight in mice

More information: Higgins CB, Zhang Y, Mayer AL, Fujiwara H, Stothard AI, Graham MJ, Swarts BM, DeBosch BJ. Aloxe3 is a hepatic fasting-responsive lipoxygenase that enhances insulin sensitivity via hepatic PPAR-gamma. JCI Insight Aug. 23, 2018.

Related Stories

Peptide improves glucose and insulin sensitivity, lowers weight in mice

February 8, 2018
Treating obese mice with catestatin (CST), a peptide naturally occurring in the body, showed significant improvement in glucose and insulin tolerance and reduced body weight, report University of California San Diego School ...

Natural sugar may treat fatty liver disease

February 23, 2016
Nonalcoholic fatty liver disease, a condition closely linked to obesity, affects roughly 25 percent of people in the U.S. There is no drug treatment for the disease, although weight loss can reduce the buildup of fat in the ...

Protein linked to aging identified as new target for controlling diabetes

November 5, 2014
Indiana University School of Medicine researchers have identified a small protein with a big role in lowering plasma glucose and increasing insulin sensitivity. Their research appeared online today in Diabetes, the journal ...

Silencing fat protein improves obesity and blood sugar

December 15, 2016
In a study published in the Journal of Lipid Research, Saint Louis University scientist Angel Baldan, Ph.D., reports that turning off a protein found in liver and adipose tissue significantly improves blood sugar levels, ...

Culprit in reducing effectiveness of insulin identified

April 26, 2018
Scientists at Osaka University have discovered that Stromal derived factor-1 (SDF-1) secreted from adipocytes reduces the effectiveness of insulin in adipocytes and decreased insulin-induced glucose uptake.

Factors ID'd to predict fatty liver in obese teens

April 24, 2018
(HealthDay)—Ethnicity/race, markers of insulin resistance, and genetic factors might help identify obese youth at risk for developing fatty liver, according to a study published online April 17 in Hepatology.

Recommended for you

Beer's bitter delight is tasted in the gut

September 26, 2018
Hoppy beers are famous as a driver of craft brewing. But the challenging taste of hops goes far beyond the palate. According to a new study from Scripps Research scientists, the bitter flavor literally reaches into your gut.

Genomic study brings us closer to precision medicine for type 2 diabetes

September 21, 2018
Most patients diagnosed with type 2 diabetes are treated with a "one-size-fits-all" protocol that is not tailored to each person's physiology and may leave many cases inadequately managed. A new study by scientists at the ...

High gluten diet in pregnancy linked to increased risk of diabetes in children

September 19, 2018
A high gluten intake by mothers during pregnancy is associated with an increased risk of their child developing type 1 diabetes, suggests a study published by The BMJ today.

Anti-inflammatory protein promotes healthy gut bacteria to curb obesity

September 19, 2018
Scientists from the UNC School of Medicine discovered that the anti-inflammatory protein NLRP12 normally helps protect mice against obesity and insulin resistance when they are fed a high-fat diet. The researchers also reported ...

Study reveals the current rates of diagnosed type 1 and type 2 diabetes in American adults

September 18, 2018
A new study from the University of Iowa finds that type 2 diabetes remains overwhelmingly the most common type of diabetes diagnosed in American adults who have the disease.

Research reveals link between immunity, diabetes

September 14, 2018
When it comes to diet-induced obesity, your immune system is not always your friend.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.