Rogue proteins may underlie some ALS and frontotemporal dementia cases, says study

August 20, 2018, Columbia University
Rogue proteins may underlie some ALS and frontotemporal dementia cases, says study
esearchers found clumps of non-functioning hnRNP H and at least three other RNA-binding proteins in the brain cells of people who had died with ALS, frontotemporal dementia or both. Bright red clumps of hnRNP H can be seen in the spinal cord motor neurons at left. Healthy neurons are shown at right. Credit: Aarti Sharma /Columbia University

ALS—amyotrophic lateral sclerosis—is a neurodegenerative disease that attacks motor neurons in the brain and spinal cord, slowly robbing its victims of their ability to walk, talk, breathe and swallow. In a cruel twist, some ALS patients also develop frontotemporal dementia, a disease that destroys an entirely different set of brain cells—cortical neurons—leading to personality changes, among other effects.

Inherited forms of both diseases have been traced to gene mutations associated with an abnormal buildup of the RNA-binding protein, TDP-43, in the . Now, in a study in the journal eLife, Columbia University and New York Genome Center researchers show that TDP-43 and at least three other RNA-binding proteins appear to run similarly amok in ALS and dementia patients without the mutation. Their finding suggests that the dominant form of hereditary ALS and may share molecular underpinnings with far more common versions of ALS and dementia that have no known genetic basis.

"It turns out that if you analyze the biochemical properties of RNA-binding proteins you see it's not just TDP-43 but several others that are also perturbed," says Aaron Gitler, a genetics professor at Stanford University who discusses the study in the same issue of eLife. "This is a new concept in how we think about these diseases—not just as TDP-43 diseases, but as RNA-binding protein diseases."

Normally, the TDP-43 protein helps control the expression of messenger RNA, and thus, gene behavior, from inside the cell nucleus. But in the brain cells of nearly all ALS and half of frontotemporal dementia patients, the protein accumulates outside the nucleus, eventually forming clumps big enough to see under a microscope. What causes the buildup, however, remains unclear.

In a pair of landmark studies in Neuron in 2011, researchers identified the genetic mutation responsible for most cases of inherited ALS and frontotemporal dementia. On a small section of chromosome 9, the mutation appears to cause a DNA fragment that normally recurs a handful of times to repeat itself hundreds to thousands of times. Researchers hypothesized that RNA-binding proteins like TDP-43, designed to stick to themselves and similar proteins, would glom on to the repeats and abandon their gene-expression role, eventually causing brain cells to degenerate and die.

In a 2016 study in eLife, a team led by Erin Conlon, then a Columbia graduate student, showed that the mutation triggered another RNA-binding protein, called hnRNP H, to form similar clumps that disrupted gene expression. Unlike TDP-43, these clumps were largely invisible to the eye but could be measured with a biochemical test.

On a hunch that a similar pattern might show up in mutation-free patients, who represent a majority of ALS and frontotemporal dementia cases, Conlon and her colleagues in the current study analyzed the brains of 50 people who had died with one or both diseases. To their surprise, in more than half of the brains, they found large amounts of biochemically insoluble hnRNP H and three other RNA-binding proteins —TDP-43, FUS and hnRNP A1— indicating all had stopped regulating gene expression.

"RNA-binding proteins control how much proteins a gene makes," says the study's senior author, James Manley, a molecular biology professor at Columbia. "This process goes seriously awry when these aggregates are around."

Many questions remain, including what causes RNA-binding proteins, in the absence of a mutation, to go haywire in the first place. Another mystery is why the impaired proteins surface in motor and cortical neurons while other are spared.

Neurons may be especially vulnerable to toxic accumulations, because unlike other cells, they can't divide or be replaced, but that doesn't explain why motor and cortical neurons are especially sensitive, says Conlon, now a postdoctoral researcher at Rockefeller University.

Though much more still needs to be worked out, the study suggests that a blood test or other non-invasive way to detect ALS and frontotemporal could soon be within reach. The findings also indicate that ALS comes in at least two forms—one in which RNA-binding function is disrupted, and the other with a still-unknown mechanism.

"Our data suggests that we may be able to distinguish one subpopulation of ALS patients from the other," says study coauthor Dr. Neil Shneider, a neurology professor who heads Columbia University Irving Medical Center's Eleanor and Lou Gehrig ALS Center. "This could lead to a therapeutic intervention that works selectively on those patients."

Explore further: Mechanism behind neuron death in motor neurone disease and frontotemporal dementia discovered

More information: Erin G Conlon et al, Unexpected similarities between C9ORF72 and sporadic forms of ALS/FTD suggest a common disease mechanism, eLife (2018). DOI: 10.7554/eLife.37754

Related Stories

Mechanism behind neuron death in motor neurone disease and frontotemporal dementia discovered

April 20, 2018
Scientists have identified the molecular mechanism that leads to the death of neurons in amyotrophic lateral sclerosis (also known as ALS or motor neurone disease) and a common form of frontotemporal dementia.

Researchers describe mechanism of protein accumulation in neurodegenerative diseases

April 20, 2018
Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have characterized the mechanism that initiates the pathological aggregation of the protein FUS, which plays a central role in two distinct neurodegenerative diseases.

Study finds genetic mutation causes 'vicious cycle' in most common form of amyotrophic lateral sclerosis

December 8, 2017
University of Michigan-led research brings scientists one step closer to understanding the development of neurodegenerative disorders such as ALS.

Important role of nucleocytoplasmic transport in amyotrophic lateral sclerosis and frontotemporal dementia

February 12, 2016
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two devastating adult-onset neurodegenerative disorders. No cure exists for these diseases. Ten percent of ALS patients suffer from a familial form ...

Scientists discover a key function of ALS-linked protein

March 8, 2018
The protein FUS, whose mutation or disruption causes many cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), works as a central component of one of the most important regulatory systems in cells, ...

Recommended for you

Neuroscience of envy: Activated brain region when others are rewarded revealed

September 19, 2018
How we feel about our own material wellbeing and status in society is largely determined by our evaluation of others. However, the neurological underpinnings of how we monitor the complex social environments under conditions ...

Use of electrical brain stimulation to foster creativity has sweeping implications

September 18, 2018
What is creativity, and can it be enhanced—safely—in a person who needs a boost of imagination? Georgetown experts debate the growing use of electrical devices that stimulate brain tissue, and conclude there is potential ...

Engineers decode conversations in brain's motor cortex

September 18, 2018
How does your brain talk with your arm? The body doesn't use English, or any other spoken language. Biomedical engineers are developing methods for decoding the conversation, by analyzing electrical patterns in the motor ...

Team identifies brain's lymphatic vessels as new avenue to treat multiple sclerosis

September 17, 2018
Lymphatic vessels that clean the brain of harmful material play a crucial role in the development and progression of multiple sclerosis, new research from the University of Virginia School of Medicine suggests. The vessels ...

Resynchronizing neurons to erase schizophrenia

September 17, 2018
Schizophrenia, an often severe and disabling psychiatric disorder, affects approximately 1 percent of the world's population. While research over the past few years has suggested that desynchronization of neurons may be the ...

Circuit found for brain's statistical inference about motion

September 17, 2018
As the eye tracks a bird flying past, the muscles that pan the eyeballs to keep the target in focus set their pace not only on the speed they see, but also on a reasonable estimate of the speed they expect from having watched ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.