Scientists uncover new details in how sense of smell develops

August 10, 2018 by Julia Evangelou Strait, Washington University School of Medicine
The olfactory epithelium -- a mouse's is pictured in green -- is a sheet of tissue that develops in the nasal cavity. Researchers at Washington University School of Medicine in St. Louis have uncovered new details on how the olfactory epithelium develops and why it is that some animals have such great senses of smell, compared with others that lack such ability. Credit: Lu Yang

Dogs, known for their extraordinarily keen senses of smell, can be trained to use their sensitive sniffers to find drugs, bombs, bed bugs, missing hikers and even cancer. Among dogs and other animals that rely on smell, at least one factor that may give them an advantage is a sheet of tissue in the nasal cavity.

In humans, this tissue—called the olfactory —is a single flat sheet lining the roof of the . In dogs, however, the olfactory epithelium forms a complex maze, folding and curling over a number of bony protrusions, called turbinates, that form in the nasal cavity. The olfactory epithelium contains specialized neurons that bind to odor molecules and send signals to the brain that are interpreted as . Dogs have hundreds of millions more of these neurons than people do. It is assumed this added structural complexity is responsible for dogs' superior ability to smell. But, surprisingly, that has never been shown scientifically.

Now, researchers at Washington University School of Medicine in St. Louis have uncovered new details in how the olfactory epithelium develops. The new knowledge could help scientists prove that turbinates and the resulting larger surface area of the olfactory epithelium are one definitive reason dogs smell so well.

"We think the surface area of the sheet matters in how well animals smell and in the types of smells they can detect," said David M. Ornitz, MD, Ph.D., the Alumni Endowed Professor of Developmental Biology. "One reason we think this stems from differences in the complexity of these turbinates. Animals that we think of as having a great sense of smell have really complex turbinate systems."

The study, published Aug. 9 in the journal Developmental Cell, also could help answer a longstanding evolutionary question: How did animals' senses of smell become so enormously variable? The way these abilities came to diverge over evolutionary history remains a mystery. Understanding these signals could help scientists tease out how dogs evolved an extraordinary olfactory system and humans wound up with a comparatively stunted one.

First author Lu M. Yang, a graduate student in Ornitz's lab, found that a newly discovered stem cell the researchers dubbed FEP cells control the size of the surface area of the olfactory epithelium. These stem cells also send a specific signaling molecule to the underlying turbinates, telling them to grow. The evidence suggests that this signaling crosstalk between the epithelium and the turbinates regulates the scale of the olfactory system that ends up developing, sometimes resulting in olfactory epithelia with larger surface areas, such as in dogs.

When the stem cells can't signal properly, turbinate growth and experience an arrested development. To study this in the lab, mice with such olfactory stunting could, in theory, be compared with typical mice to learn more about how these signals govern the final complexity of an animal's olfactory system.

"Before our study, we didn't know how the epithelium expands from a tiny patch of to a large sheet that develops in conjunction with complex turbinates," Yang said. "We can use this to help understand why , for example, have such a good sense of smell. They have extremely complex turbinate structures, and now we know some of the details about how those structures develop."

Explore further: Gene therapy restores sense of smell in mice

More information: Lu M. Yang et al. FGF20-Expressing, Wnt-Responsive Olfactory Epithelial Progenitors Regulate Underlying Turbinate Growth to Optimize Surface Area, Developmental Cell (2018). DOI: 10.1016/j.devcel.2018.07.010

Related Stories

Gene therapy restores sense of smell in mice

July 30, 2018
Re-expressing a protein critical for the detection and perception of odors restores function of the olfactory system in a genetic mouse model of lost hair-like cellular structures known as cilia, according to research published ...

When the nose doesn't know: Can loss of smell be repaired?

December 4, 2017
Researchers at Tufts University School of Medicine, led by Dr. James E. Schwob, are examining the behavior of adult stem cells within the context of aging and, specifically, the sense of smell. As part of the normal aging ...

A protein in neurons in the nose controls the sensitivity of mice to smells in their environment

October 4, 2013
Information about odorant molecules in the environment helps animals to find food, select mates and avoid predators. Yoshihiro Yoshihara and colleagues from the RIKEN Brain Science Institute have now identified a protein ...

Recommended for you

Perinatal hypoxia associated with long-term cerebellar learning deficits and Purkinje cell misfiring

August 18, 2018
Oxygen deprivation associated with preterm birth leaves telltale signs on the brains of newborns in the form of alterations to cerebellar white matter at the cellular and the physiological levels. Now, an experimental model ...

People are more honest when using a foreign tongue, research finds

August 17, 2018
New UChicago-led research suggests that someone who speaks in a foreign language is probably more credible than the average native speaker.

Critical role of DHA on foetal brain development revealed

August 17, 2018
Duke-NUS researchers have found evidence that a natural form of Docosahexaenoic Acid (DHA) made by the liver called Lyso-Phosphatidyl-Choline (LPC-DHA), is critical for normal foetal and infant brain development, and that ...

Automated detection of focal epileptic seizures in a sentinel area of the human brain

August 17, 2018
Patients with focal epilepsy that does not respond to medications badly need alternative treatments.

Men and women show surprising differences in seeing motion

August 16, 2018
Researchers reporting in the journal Current Biology on August 16 have found an unexpected difference between men and women. On average, their studies show, men pick up on visual motion significantly faster than women do.

Brain response study upends thinking about why practice speeds up motor reaction times

August 16, 2018
Researchers in the Department of Physical Medicine and Rehabilitation at Johns Hopkins Medicine report that a computerized study of 36 healthy adult volunteers asked to repeat the same movement over and over became significantly ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.