Researchers create specialized delivery methods to help treat cancer, other disorders

August 13, 2018, University of Missouri-Columbia
David Porciani and his team demonstrated that specialized nucleic acid-based nanostructures could be used to target cancer cells while bypassing normal cells. Credit: Erica Overfelt, Bond Life Sciences Center

More than 100 years ago, German Nobel laureate Paul Ehrlich popularized the "magic bullet" concept—a method that clinicians might one day use to target invading microbes without harming other parts of the body. Although chemotherapies have been highly useful as targeted treatments for cancer, unwanted side effects still plague patients. Now, researchers at the University of Missouri have demonstrated that specialized nucleic acid-based nanostructures could be used to target cancer cells while bypassing normal cells.

"Most of the therapeutic drugs are not able to discriminate the cancer from ," said David Porciani, a postdoctoral fellow in Donald Burke's lab at the MU Bond Life Sciences Center. "They are killing both cell populations (healthy and malignant), and the treatment can have harsher side effects than the cancer itself in the short term. We are developing 'smart' molecules that can bind with receptors that are found on the surface of cancer cells, thus representing a cancer signature. The idea is to use these smart molecules as vehicles to deliver chemotherapeutic drugs or diagnostics."

Using a molecular process that mimics a highly-accelerated form of natural evolution, Porciani and his team sought out nucleic acid ligands, or aptamers. Because of their three-dimensional structures, aptamers can be trained to bind to certain target molecules with high affinity and selectivity. When the target is a cancer-associated receptor, these aptamers can be used as molecular tools to recognize specifically diseased cells.

The team then "loaded" the aptamers with large, fluorescent RNAs generating nucleic-acid nanostructures. Upon incubation with target cancer and non-target cells, only malignant cells were illuminated by the nanostructure showing that the structures had correctly bonded with their intended targets.

"Next steps for our studies are to prove that these aptamers can be loaded with therapeutic molecules that specifically target and treat leaving normal tissues untouched," Porciani said. "While aptamers have been proven in the past as tools to deliver small drugs, our method paves the way to deliver even larger and potentially more powerful RNA-based drugs possibly creating that 'magic bullet' that Erhlich described in the last century."

This research highlights the power of translational precision medicine and the promise of the proposed Translational Precision Medicine Complex at the University of Missouri. The TPMC will bring together industry partners, multiple schools and colleges on campus, and the federal and state government to enable precision and personalized medicine. Scientific advancements made at MU will be effectively translated into new drugs, devices and treatments that deliver customized patient care based on an individual's genes, environment and lifestyle, ultimately improving health and well-being of people.

The study, "Modular cell-internalizing nanostructure enables targeted delivery of large functional RNAs in cell lines," recently was published in Nature Communications.

Explore further: Combination breast cancer therapy targets tumor cells and the blood vessels that feed them

More information: David Porciani et al. Modular cell-internalizing aptamer nanostructure enables targeted delivery of large functional RNAs in cancer cell lines, Nature Communications (2018). DOI: 10.1038/s41467-018-04691-x

Related Stories

Combination breast cancer therapy targets tumor cells and the blood vessels that feed them

March 26, 2018
Each day, normal human cell tissues express a protein known as p53 that wages war against potential malignancies. However, between 30 and 40 percent of human breast cancers express a defective (mutant) form of p53 that helps ...

Man-made antibodies show promise in attacking cancer cells in animal models

April 16, 2018
Using chemotherapy along with aptamers—lab-made molecules that function like antibodies—Duke Health researchers showed that they can zero in on and kill prostate cancer tumors in mice while leaving healthy tissue unscathed.

New drug technology may improve treatment options for aggressive types of breast cancer

June 20, 2018
Purdue University researchers have developed a new technology that may change how one of the most aggressive types of breast cancer is treated.

Modifying therapeutic DNA aptamers to keep them in the bloodstream longer

November 29, 2017
Designing new therapeutic DNA aptamers with diverse side chains can improve their ability to interact with targets, and a new study describes characteristics of these side chains that may determine how long the aptamers remain ...

Recommended for you

New inflammation inhibitor discovered

November 16, 2018
A multidisciplinary team of researchers led from Karolinska Institutet in Sweden have developed an anti-inflammatory drug molecule with a new mechanism of action. By inhibiting a certain protein, the researchers were able ...

Gut hormone and brown fat interact to tell the brain it's time to stop eating

November 15, 2018
Researchers from Germany and Finland have shown that so-called "brown fat" interacts with the gut hormone secretin in mice to relay nutritional signals about fullness to the brain during a meal. The study, appearing November ...

Brain, muscle cells found lurking in kidney organoids grown in lab

November 15, 2018
Scientists hoping to develop better treatments for kidney disease have turned their attention to growing clusters of kidney cells in the lab. One day, so-called organoids—grown from human stem cells—may help repair damaged ...

How the Tasmanian devil inspired researchers to create 'safe cell' therapies

November 15, 2018
A contagious facial cancer that has ravaged Tasmanian devils in southern Australia isn't the first place one would look to find the key to advancing cell therapies in humans.

Researchers discover important connection between cells in the liver

November 15, 2018
University of Minnesota Medical School researchers have made a discovery which could lead to a new way of thinking about how disease pathogenesis in the liver is regulated, which is important for understanding the condition ...

Precision neuroengineering enables reproduction of complex brain-like functions in vitro

November 14, 2018
One of the most important and surprising traits of the brain is its ability to dynamically reconfigure the connections to process and respond properly to stimuli. Researchers from Tohoku University (Sendai, Japan) and the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.