Researchers successfully transplant bioengineered lung

August 1, 2018, University of Texas Medical Branch at Galveston
Researchers successfully transplant bioengineered lung
The bioengineered lungs were grown and tested in a bioreactor chamber. Credit: J. Nichols et al., Science Translational Medicine (2018)

A research team at the University of Texas Medical Branch have bioengineered lungs and transplanted them into adult pigs with no medical complication.

In 2014, Joan Nichols and Joaquin Cortiella from The University of Texas Medical Branch at Galveston were the first research team to successfully bioengineer human lungs in a lab. In a paper now available in Science Translational Medicine, they provide details of how their work has progressed from 2014 to the point no complications have occurred in the pigs as part of standard preclinical testing.

"The number of people who have developed severe lung injuries has increased worldwide, while the number of available transplantable organs have decreased," said Cortiella, professor of pediatric anesthesia. "Our ultimate goal is to eventually provide new options for the many people awaiting a transplant," said Nichols, professor of internal medicine and associate director of the Galveston National Laboratory at UTMB.

To produce a bioengineered lung, a support scaffold is needed that meets the structural needs of a lung. A support scaffold was created using a lung from an unrelated animal that was treated using a special mixture of sugar and detergent to eliminate all cells and blood in the lung, leaving only the scaffolding proteins or skeleton of the lung behind. This is a lung-shaped scaffold made totally from lung proteins.

The cells used to produce each bioengineered lung came from a single lung removed from each of the study . This was the source of the cells used to produce a tissue-matched bioengineered lung for each animal in the study. The lung scaffold was placed into a tank filled with a carefully blended cocktail of nutrients and the animals' own cells were added to the scaffold following a carefully designed protocol or recipe. The bioengineered lungs were grown in a bioreactor for 30 days prior to transplantation. Animal recipients were survived for 10 hours, two weeks, one month and two months after transplantation, allowing the research team to examine development of the following transplantation and how the bioengineered lung would integrate with the body.

Dr. Joan Nichols (left, lead author) and Dr. Joaquin Cortiella (right, senior author), answer questions about the findings and implications of their study. Credit: The University of Texas Medical Branch at Galveston

All of the pigs that received a bioengineered lung stayed healthy. As early as two weeks post-transplant, the bioengineered lung had established the strong network of blood vessels needed for the lung to survive.

"We saw no signs of pulmonary edema, which is usually a sign of the vasculature not being mature enough," said Nichols and Cortiella. "The bioengineered lungs continued to develop post-transplant without any infusions of growth factors, the body provided all of the building blocks that the new lungs needed."

Nichols said that the focus of the study was to learn how well the bioengineered lung adapted and continued to mature within a large, living body. They didn't evaluate how much the bioengineered lung provided oxygenation to the animal.

UTMB researchers successfully transplant bioengineered lung
A research team at the University of Texas Medical Branch have bioengineered lungs and transplanted them into adult pigs with no medical complication. Credit: The University of Texas Medical Branch at Galveston
"We do know that the animals had 100 percent oxygen saturation, as they had one normal functioning lung," said Cortiella. "Even after two months, the bioengineered lung was not yet mature enough for us to stop the animal from breathing on the normal lung and switch to just the bioengineered ."

For this reason, future studies will look at long-term survival and maturation of the tissues as well as gas exchange capability.

The researchers said that with enough funding, they could grow lungs to transplant into people in compassionate use circumstances within five to 10 years.

"It has taken a lot of heart and 15 years of research to get us this far, our team has done something incredible with a ridiculously small budget and an amazingly dedicated group of people," Nichols and Cortiella said.

Explore further: Space station crew takes a breather with lung tissue investigation

More information: J.E. Nichols el al., "Production and transplantation of bioengineered lung into a large-animal model," Science Translational Medicine (2018). stm.sciencemag.org/lookup/doi/ … scitranslmed.aao3926

Related Stories

Space station crew takes a breather with lung tissue investigation

October 23, 2017
The microgravity environment of the International Space Station impacts nearly every system within the human body. Researchers are studying the effects to the eyes, heart, muscles, and bones, but an area that hasn't received ...

Research team successfully grows human lung in lab

February 18, 2014
(Medical Xpress)—A team of researchers with the University of Texas has, for the first time, successfully grown a human lung in a lab. Project leads Dr. Joaquin Cortiella and Dr. Joan Nichols announced the landmark breakthrough ...

Researchers investigate the potential of lung restoration for transplant

January 8, 2018
Q: What is the role of lung restoration in lung transplants? How does it work?

Clues found to early lung transplant failure

May 21, 2018
Among organ transplant patients, those receiving new lungs face a higher rate of organ failure and death compared with people undergoing heart, kidney and liver transplants. One of the culprits is inflammation that damages ...

Recommended for you

Targeting a hunger hormone to treat obesity

October 22, 2018
About 64 per cent of Canadian adults are overweight or obese, according to Health Canada. That's a problem, because obesity promotes the emergence of chronic diseases such as type 2 diabetes, heart disease and some cancers.

Scientists in Sweden may have figured out one way acne bacteria defies treatment

October 22, 2018
Researchers in Sweden have discovered how acne-causing bacteria feed off their human hosts. The study, which was performed at KTH Royal Institute of Technology, could make it possible to find effective ways to treat severe ...

Gene plays critical role in noise-induced deafness

October 19, 2018
In experiments using mice, a team of UC San Francisco researchers has discovered a gene that plays an essential role in noise-induced deafness. Remarkably, by administering an experimental chemical—identified in a separate ...

Scientists grow functioning human neural networks in 3-D from stem cells

October 18, 2018
A team of Tufts University-led researchers has developed three-dimensional (3-D) human tissue culture models for the central nervous system that mimic structural and functional features of the brain and demonstrate neural ...

Functional engineered oesophagus could pave way for clinical trials 

October 18, 2018
The world's first functional oesophagus engineered from stem cells has been grown and successfully transplanted into mice, as part of a pioneering new study led by UCL.

New findings cast light on lymphatic system, key player in human health

October 16, 2018
Scientists at the Oklahoma Medical Research Foundation have broken new ground in understanding how the lymphatic system works, potentially opening the door for future therapies.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.