Can a common heart condition cause sudden death?

September 20, 2018, Gladstone Institutes
The human stem cell-derived cardiac microtissue grown on a fiber-based scaffold fabricated using a laser-guided bioprinting technology (Red: cell nuclei, Green: cardiomyocytes, Blue: fibers). Credit: Zhen Ma, PhD

About one person out of 500 has a heart condition known as hypertrophic cardiomyopathy (HCM). This condition causes thickening of the heart muscle and results in defects in the heart's electrical system. Under conditions of environmental stress such as exercise, HCM can result in sudden death. In other cases, patients may go undiagnosed, with their heart function declining gradually over decades.

3-D Construction Builds a Better Model of the Heart

Although the genetic defects that lead to HCM are known, it has been difficult to understand how those mutations result in disease, in part because in a two-dimensional culture dish do not interact the same way cells in a three-dimensional organ do. Now, using the most advanced techniques in gene editing, stem cell generation, and three-dimensional cell culture, researchers from UC Berkeley and the Gladstone Institutes in San Francisco have for the first time developed a "microtissue" model of the heart in which they can study how common affects normal and abnormal heart tissue.

The study, published in Nature Biomedical Engineering, was a collaboration between the labs of Kevin Healy, Ph.D., the Jan Fandrianto and Selfia Halim Distinguished Professor of Engineering in the Departments of Bioengineering and Materials Science & Engineering at UC Berkeley, and Bruce Conklin, MD, a senior investigator at the Gladstone Institutes and professor of medicine at UC San Francisco.

With these new microtissue models, the researchers compared heart tissue grown from normal cells to in which all the cells had a mutation in the gene encoding myosin binding protein C (MYBPC3), the gene that is most often altered in HCM patients.

For the study, the scientists used laser-guided three-dimensional printing to make a microscopic scaffold on which to grow heart cells. By varying the thickness of the scaffold, the scientists could mimic the stresses that experience under different conditions. The myocytes were able to contract together to move the scaffolding, similar to the movement of an accordion's bellows under pressure.

When the scientists used normal cells to build microtissues, they found that they were able to adapt well to stress, comparable to the way a normal heart would pump harder to meet an increased oxygen demand during exercise. However, when the microtissues were built from mutant cells, they contracted abnormally and arrhythmically under conditions of elevated mechanical stress, similar to the way HCM patients may experience arrhythmias when heart pressure is elevated due to the demands of exercise.

"With these microtissues we were able to observe how the human heart can develop this syndrome," explained Zhen Ma, one of the lead authors of the study who was a postdoctoral fellow with Healy's laboratory group, and who now is an assistant professor of biomedical and chemical engineering at Syracuse University. "Even though this is a microscopically tiny part of the heart, we could measure its contraction, the mechanical forces generated, and the calcium flow associated with the electrical signaling that triggers contraction of heart muscle."

A Discovery with Broad Applications to Improve Human Health

"This advance gives us an opportunity to study cardiac disease in a much more precise manner," said Healy. "We think it paves the way for new therapies because these precise tissue models will give us a way to better target new therapies to optimize responses in sub-populations of patients."

Conklin, a world leader in using stem cell technologies and to create cells and living tissues that mimic human heart disease, is also excited about how microtissues might be used to address other scientific problems. "Some of the worst drug safety issues are due to problems with side effects on the , so we need better ways to test drugs for potential cardiac effects," Conklin said. "It's possible that in the future microtissues might become the preferred choice for their capability to capture a fuller range of cardiac physiology."

Explore further: Micro heart muscle created from stem cells

More information: Zhen Ma et al, Contractile deficits in engineered cardiac microtissues as a result of MYBPC3 deficiency and mechanical overload, Nature Biomedical Engineering (2018). DOI: 10.1038/s41551-018-0280-4

Related Stories

Micro heart muscle created from stem cells

April 20, 2016
Scientists at the Gladstone Institutes have invented a new way to create three-dimensional human heart tissue from stem cells. The tissue can be used to model disease and test drugs, and it opens the door for a precision ...

Human stem cell research shows new genetic pathway controls the heart beat

June 26, 2018
New research into human heart development has shed light on the way heart muscle cells contract.

New study finds knocking out p63 gene as means of converting scar tissue into muscle tissue in the heart

April 17, 2018
Following a heart attack, the parts of the heart muscle that die do not regenerate into new heart tissue and instead are replaced by scar tissue. Using rodent models, researchers at Baylor College of Medicine are looking ...

Researchers create model of early human heart development from stem cells

July 14, 2015
Researchers at the University of California, Berkeley, in collaboration with scientists at the Gladstone Institutes, have developed a template for growing beating cardiac tissue from stem cells, creating a system that could ...

New target for treating heart failure identified

June 11, 2018
Changes in cellular struts called microtubules (MT) can affect the stiffness of diseased human heart muscle cells, and reversing these modifications can lessen the stiffness and improve the beating strength of these cells ...

Recommended for you

Exercise may be as effective as prescribed drugs to lower high blood pressure

December 18, 2018
Exercise may be as effective as prescribed drugs to lower high (140 mm Hg) blood pressure, suggests a pooled analysis of the available data, in what is thought to be the first study of its kind, and published online in the ...

Can stem cells help a diseased heart heal itself? Researchers achieve important milestone

December 14, 2018
A team of Rutgers scientists, including Leonard Lee and Shaohua Li, have taken an important step toward the goal of making diseased hearts heal themselves—a new model that would reduce the need for bypass surgery, heart ...

Your weight history may predict your heart failure risk

December 12, 2018
In a medical records analysis of information gathered on more than 6,000 people, Johns Hopkins Medicine researchers conclude that simply asking older adult patients about their weight history at ages 20 and 40 could provide ...

Higher risk of heart attack on Christmas Eve

December 12, 2018
The risk of heart attack peaks at around 10pm on Christmas Eve, particularly for older and sicker people, most likely due to heightened emotional stress, finds a Swedish study in this week's Christmas issue of The BMJ.

Age is the biggest risk for heart disease, but lifestyle and meds have impact

December 12, 2018
Of all the risk factors for heart disease, age is the strongest predictor of potential trouble.

New understanding of mysterious 'hereditary swelling'

December 12, 2018
For the first time ever, biomedical researchers from Aarhus University, Denmark, report cellular defects that lead to a rare disease, hereditary angioedema (HAE), in which patients experience recurrent episodes of swelling ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.