Human gut study questions probiotic health benefits

September 6, 2018, Cell Press
Credit: CC0 Public Domain

Probiotics are found in everything from chocolate and pickles to hand lotion and baby formula, and millions of people buy probiotic supplements to boost digestive health. But new research suggests they might not be as effective as we think. Through a series of experiments looking inside the human gut, researchers show that many people's digestive tracts prevent standard probiotics from successfully colonizing them. Furthermore, taking probiotics to counterbalance antibiotics could delay the return of normal gut bacteria and gut gene expression to their naïve state. The research publishes as two back-to-back papers on September 6 in the journal Cell.

"People have thrown a lot of support to probiotics, even though the literature underlying our understanding of them is very controversial; we wanted to determine whether probiotics such as the ones you buy in the supermarket do colonize the gastrointestinal tract like they're supposed to, and then whether these probiotics are having any impact on the human host," says senior author Eran Elinav, an immunologist at the Weizmann Institute of Science in Israel. "Surprisingly, we saw that many healthy volunteers were actually resistant in that the probiotics couldn't colonize their GI tracts. This suggests that probiotics should not be universally given as a 'one-size-fits-all' supplement. Instead, they could be tailored to the needs of each individual."

While past studies have investigated similar questions, they have all used patients' excrement as a proxy for microbe activity in the GI tract. Instead, Elinav, his colleague Eran Segal, (a computational biologist at the Weizmann Institute), and their teams spearheaded by Niv Zmora, Jotham Suez, Gili Zilberman Schapira, and Uria Mor of the Elinav lab collaborated with Zamir Halpern, Chief of Gastroenterology at the Tel Aviv Medical Center to measure gut colonization directly.

In the first study, 25 human volunteers underwent upper endoscopies and colonoscopies to sample their baseline microbiome in regions of the gut. 15 of those volunteers were then divided into two groups. The first group consumed generic strains, while the second was administered a placebo. Both groups then underwent a second round of upper endoscopies and colonoscopies to assess their internal response before being followed for another 2 months.

The scientists discovered that the probiotics successfully colonized the GI tracts of some people, called the "persisters," while the gut microbiomes of "resisters" expelled them. Moreover, the persister and resister patterns would determine whether probiotics, in a given person, would impact their indigenous microbiome and human gene expression. The researchers could predict whether a person would be a persister or resister just by examining their baseline microbiome and gut .

They also found that stool only partially correlates with the microbiome functioning inside the body, so relying on stool as was done in previous studies for many years could be misleading.

"Although all of our probiotic-consuming volunteers showed probiotics in their stool, only some of them showed them in their gut, which is where they need to be," says Segal. "If some people resist and only some people permit them, the benefits of the standard probiotics we all take can't be as universal as we once thought. These results highlight the role of the gut microbiome in driving very specific clinical differences between people."

In the second study, the researchers questioned whether patients should be taking probiotics to counter the effects of antibiotics, as they are often told to do in order to repopulate the after it's cleared by antibiotic treatment. To look at this, 21 volunteers were given a course of antibiotics and then randomly assigned to one of three groups. The first was a "watch-and-wait" group that let their microbiome recover on its own. The second group was administered the same generic probiotics used in the first study. The third group was treated with an autologous fecal microbiome transplant (aFMT) made up of their own bacteria that had been collected before giving them the antibiotic.

After the antibiotics had cleared the way, the standard probiotics could easily colonize the gut of everyone in the second group, but to the team's surprise, this probiotic colonization prevented the host's normal microbiome and gut gene expression profile from returning to their normal state for months afterward. In contrast, the aFMT resulted in the third group's native gut and gene program returning to normal within days.

"Contrary to the current dogma that probiotics are harmless and benefit everyone, these results reveal a new potential adverse side effect of probiotic use with antibiotics that might even bring long-term consequences," Elinav says. "In contrast, replenishing the gut with one's own microbes is a personalized mother-nature-designed treatment that led to a full reversal of the antibiotics' effects."

Segal adds, "This opens the door to diagnostics that would take us from an empiric universal consumption of probiotics, which appears useless in many cases, to one that is tailored to the individual and can be prescribed to different individuals based on their baseline features."

Explore further: Baby poop may be source of beneficial probiotics

More information: Cell, Zmora, et al.: "Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features" https://www.cell.com/cell/fulltext/S0092-8674(18)31102-4 , DOI: 10.1016/j.cell.2018.08.041

Cell, Suez, et al.: "Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT" https://www.cell.com/cell/fulltext/S0092-8674(18)31108-5 , DOI: 10.1016/j.cell.2018.08.047

Related Stories

Baby poop may be source of beneficial probiotics

August 23, 2018
Probiotics seem to be everywhere these days—in yogurt, pickles, bread, even dog food. But there's one place that may surprise you: There are probiotics in dirty diapers.

Probiotics for respiratory illness could save millions

February 2, 2018
A recent study suggests the use of probiotics to prevent respiratory tract infections in Canada could result in annual savings of nearly $100 million.

Growing evidence that probiotics are good for your liver

April 23, 2018
Increased awareness of the importance of the microbes that live in our gut has spurred a great deal of research on the microbiome and fueled a booming probiotics industry. A new study suggests probiotics can improve not only ...

Probiotics prevent diarrhoea related to antibiotic use

May 30, 2013
Probiotic supplements have the potential to prevent diarrhoea caused by antibiotics, according to a new Cochrane systematic review. The authors studied Clostridium difficile (C. difficile) infections in patients taking antibiotics ...

Probiotics and prebiotics – is it safe to use them to treat disease?

July 18, 2018
The link between gut microbes and health is now well established. As a result, researchers have been investigating the effects of probiotics, prebiotics and synbiotics on various diseases. Worryingly, though, they haven't ...

Jury still out on probiotics

July 17, 2018
(HealthDay)—Probiotics have become a trendy dietary supplement, with more and more people popping bacteria-laden capsules to try to improve their gut health.

Recommended for you

Precision neuroengineering enables reproduction of complex brain-like functions in vitro

November 14, 2018
One of the most important and surprising traits of the brain is its ability to dynamically reconfigure the connections to process and respond properly to stimuli. Researchers from Tohoku University (Sendai, Japan) and the ...

Gene mutation found to cause macrocephaly and intellectual deficits

November 13, 2018
The absence of one copy of a single gene in the brain causes a rare, as-yet-unnamed neurological disorder, according to new research that builds on decades of work by a University at Buffalo biochemist and his colleagues.

Can scientists change mucus to make it easier to clear, limiting harm to lungs?

November 12, 2018
For healthy people, mucus is our friend. It traps potential pathogens so our airways can dispatch nasty bugs before they cause harm to our lungs. But for people with conditions such as cystic fibrosis (CF) and chronic obstructive ...

Mutations, CRISPR, and the biology behind movement disorders

November 12, 2018
Scientists at the RIKEN Center for Brain Science (CBS) in Japan have discovered how mutations related to a group of movement disorders produce their effects. Published in Proceedings of the National Academy of Sciences, the ...

Researchers explain how your muscles form

November 12, 2018
All vertebrates need muscles to function; they are the most abundant tissue in the human body and are integral to movement.

Salmonella found to be resistant to different classes of antibiotics

November 12, 2018
Brazil's Ministry of Health received reports of 11,524 outbreaks of foodborne diseases between 2000 and 2015, with 219,909 individuals falling sick and 167 dying from such diseases. Bacteria caused most outbreaks of such ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.