Molecule capable of halting and reverting neurodegeneration caused by Parkinson's disease identified

September 25, 2018, Autonomous University of Barcelona
Jordi Pujols, Salvador Ventura and Samuel Peña at the UAB. Credit: Universitat Autònoma de Barcelona

The small SynuClean-D molecule interrupts the formation of the alpha-synuclein amyloid fibres responsible for the onset of Parkinson's disease, and reverts the neurodegeneration caused by the disease. The study, headed by Universitat Autònoma de Barcelona researchers, was published in PNAS.

Parkinson's is the second most common incurable neurodegenerative disorder after Alzheimer's disease. It is characterised by the accumulation of protein deposits in dopaminergic neurons in the form of amyloid fibres. These aggregates are formed mainly by the and in a very complex manner, which makes it complicated to identify molecules which could prevent or revert the process and the neurodegeneration associated with it.

A scientific collaboration led by researchers at the Institute of Biotechnology and Biomedicine (IBB) of the Universitat Autònoma de Barcelona has identified a molecule which halts and reverts this neurodegeneration. After analysing over 14,000 molecules, they found the SynuClean-D molecule, which inhibits the aggregation of the alpha-synuclein protein and breaks the already formed amyloid fibres, thus preventing the initiation of the process causing the onset of the neurodegenerative Parkinson's disease.

Through experiments conducted with the small Caenorhabditis elegans worm, one of the most commonly used animal models in neurodegenerative diseases, researchers were able to verify that by administering it through food, the molecule was capable of notably reducing alpha-synuclein aggregations, preventing the spread of toxic aggregates and therefore avoiding the degeneration of dopaminergic neurons.

"Everything seems to indicate that the molecule we identified, the SynuClean-D, may provide therapeutic applications for the treatment of neurodegenerative disases such as Parkinson's in the future", UAB researcher and coordinator of the study Salvador Ventura points out.

To identify SynuClean-D researchers developed a methodology capable of indentifying the alpha-synuclein aggregation inhibitors among thousands of . Once identified, an in vitro biophysical characterisation was conducted of their inhibiting activity and tests were run to discover their behaviour with human neural cell cultures, before testing it in animal models of the disease (the Caenorhabditis elegans worm). These animals express the alpha-synuclein in the muscle or in . The experiments demonstrated that the administration of the identified inhibitor reduced protein aggregation, improving the mobility of the animal and protecting it from neural degeneration.

Explore further: Study identifies chaperone protein implicated in Parkinson's disease

More information: Jordi Pujols et al. Small molecule inhibits α-synuclein aggregation, disrupts amyloid fibrils, and prevents degeneration of dopaminergic neurons, Proceedings of the National Academy of Sciences (2018). DOI: 10.1073/pnas.1804198115

Related Stories

Study identifies chaperone protein implicated in Parkinson's disease

August 13, 2018
Reduced levels of a chaperone protein might have implications for the development and progression of neurodegenerative diseases such as Parkinson's disease and Lewy body dementia, according to new research from investigators ...

New high-throughput screening study may open up for future Parkinson's disease therapy

September 11, 2018
Parkinson's disease (PD) is the most common movement disorder in the world. PD patients suffer from shaking, rigidity, slowness of movement and difficulty with walking. It is a neurodegenerative disease caused by the loss ...

Tug of war between Parkinson's protein and growth factor

September 18, 2017
Alpha-synuclein, a sticky and sometimes toxic protein involved in Parkinson's disease (PD), blocks signals from an important brain growth factor, Emory researchers have discovered.

Scientists show that a key Parkinson's biomarker can be identified in the retina

June 8, 2018
A study involving scientists from the University of Alicante and the United States notes that the accumulation of a protein known as alpha-synuclein in the retina is a key Parkinson's biomarker that could help detect the ...

Drug discovery: Alzheimer's and Parkinson's spurred by same enzyme

July 3, 2017
Alzheimer's disease and Parkinson's disease are not the same. They affect different regions of the brain and have distinct genetic and environmental risk factors.

Calcium may play a role in the development of Parkinson's disease

February 19, 2018
Researchers have found that excess levels of calcium in brain cells may lead to the formation of toxic clusters that are the hallmark of Parkinson's disease.

Recommended for you

Researchers find inhibiting one protein destroys toxic clumps seen in Parkinson's disease

November 14, 2018
A defining feature of Parkinson's disease is the clumps of alpha-synuclein protein that accumulate in the brain's motor control area, destroying dopamine-producing neurons. Natural processes can't clear these clusters, known ...

Scalpel-free surgery enhances quality of life for Parkinson's patients, study finds

November 9, 2018
A high-tech form of brain surgery that replaces scalpels with sound waves improved quality of life for people with Parkinson's disease that has resisted other forms of treatment, a new study has found.

Singing may reduce stress, improve motor function for people with Parkinson's disease

November 7, 2018
Singing may provide benefits beyond improving respiratory and swallow control in people with Parkinson's disease, according to new data from Iowa State University researchers.

Scientists overturn odds to make Parkinson's discovery

November 7, 2018
Scientists at the University of Dundee have confirmed that a key cellular pathway that protects the brain from damage is disrupted in Parkinson's patients, raising the possibility of new treatments for the disease.

Road to cell death more clearly identified for Parkinson's disease

November 1, 2018
In experiments performed in mice, Johns Hopkins researchers report they have identified the cascade of cell death events leading to the physical and intellectual degeneration associated with Parkinson's disease.

Appendix removal is linked to lower risk of Parkinson's

October 31, 2018
Scientists have found a new clue that Parkinson's disease may get its start not in the brain but in the gut—maybe in the appendix.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.