Researchers identify common molecular mechanism in two skeletal disorders

October 9, 2018 by Alice Walton, University of California, Los Angeles
Skeletal disorders such as brittle bones or very short limbs can arise from genetic mutations (shown here in red) that affect the development of cartilage and bone. Credit: Fabiana Cabrera Csukasi

A rare and as-yet-unnamed skeletal disorder shares a common "signaling pathway" with another rare skeletal disorder called Jansen metaphyseal chondrodysplasia. (A signaling pathway is a group of molecules in a cell that work together to control one or more cell functions.) The findings point to the mechanisms that control both normal and disordered development of the skeleton, and could even lead to a novel target for cancer drugs.

Skeletal , or dysplasias—such as brittle bones or very short limbs—can arise from genetic mutations that affect the of cartilage and bone. The researchers analyzed the genes of two children who are who had a previously uncharacterized disorder that affects bone development as well as neurological and immune system development. The investigators wanted to determine whether the disorder shared genetic similarities with Jansen metaphyseal chondrodysplasia, or JMC. Both disorders cause similar changes in the bones.

Analyzing the genetics of the siblings and their family, the team found that a homozygous mutation—an alteration that occurred in the copies of a gene each child inherited from each parent—of a protein called SIK3 was responsible for the siblings' disorder. The siblings' had a 60 percent reduction in SIK3 levels. But the siblings' parents and their brother, all of whom are unaffected by the disorder, each only had one copy of the mutation.

The researchers discovered that the reduction in SIK3 affects a pathway called mTOR, which functions as a sensor for the cellular environment, including nutrients and growth factors, and which helps regulate cell metabolism, growth and proliferation. The researchers also illustrated that a patient with JMC had decreased levels of active SIK3 and altered mTOR signaling—which supports the idea that reduced SIK3 levels are responsible for disruption in normal cell growth.

The fact that two related but distinct skeletal disorders share a common pathway helps explain the molecular mechanisms that control both normal and disordered skeletal development. The involvement of mTOR is important, because its degradation is known to be linked to various diseases, including diabetes and cancer. Because it can alter mTOR activity, SIK3 could be a possible target for new drugs.

The study was published in Science Translational Medicine.

Explore further: Taking a catnap? Mouse mutation shown to increase need for sleep

More information: Fabiana Csukasi et al. The PTH/PTHrP-SIK3 pathway affects skeletogenesis through altered mTOR signaling, Science Translational Medicine (2018). DOI: 10.1126/scitranslmed.aat9356

Related Stories

Taking a catnap? Mouse mutation shown to increase need for sleep

September 24, 2018
Sleep is vital for adequate functioning across the animal kingdom, but little is known about the physiological mechanisms that regulate it, or the reasons for natural variation in people's sleep patterns.

Researchers identify human skeletal stem cells

September 20, 2018
Human skeletal stem cells that become bone, cartilage, or stroma cells have been isolated from fetal and adult bones. This is the first time that skeletal stem cells, which had been observed in rodent models, have been identified ...

Researchers identify a key nutrient sensor in the mTOR pathway that links nutrient availability to cell growth

November 10, 2017
To survive and grow, a cell must properly assess the resources available and couple that with its growth and metabolism—a misstep in that calculus can potentially cause cell death or dysfunction. At the crux of these decisions ...

Solution to medical mystery may help some children avoid bone marrow transplantation

July 26, 2018
Researchers have helped solve a decades-old mystery about which mutations are responsible for an inherited bone marrow disorder. The answer may allow some children to avoid the risk and expense of bone marrow transplantation, ...

New study reveals a protein that keeps people—and their skeletons—organized

November 14, 2013
Most people think that their planners or their iPhones keep them organized, when proteins such as liver kinase b1 (Lkb1) actually have a lot more to do with it. New research from postdoctoral fellow Lick Lai in the lab of ...

Recommended for you

Scientists identify method to study resilience to pain

December 14, 2018
Scientists at the Yale School of Medicine and Veterans Affairs Connecticut Healthcare System have successfully demonstrated that it is possible to pinpoint genes that contribute to inter-individual differences in pain.

Researchers uncover molecular mechanisms linked to autism and schizophrenia

December 13, 2018
Since the completion of the groundbreaking Human Genome Project in 2003, researchers have discovered changes to hundreds of places in the DNA, called genetic variants, associated with psychiatric diseases such as autism spectrum ...

CRISPR joins battle of the bulge, fights obesity without edits to genome

December 13, 2018
A weighty new study shows that CRISPR therapies can cut fat without cutting DNA. In a paper published Dec. 13, 2018, in the journal Science, UC San Francisco researchers describe how a modified version of CRISPR was used ...

Noncoding mutations contribute to autism risk

December 13, 2018
A whole-genome sequencing study of nearly 2,000 families has implicated mutations in 'promoter regions' of the genome—regions that precede the start of a gene—in autism. The study, which appears in the December 14 issue ...

New method for studying ALS more effectively

December 13, 2018
The neurodegenerative disease ALS causes motor neuron death and paralysis. However, long before the cells die, they lose contact with muscles as their axons atrophy. Researchers at Karolinska Institutet in Sweden have now ...

Paternal grandfather's high access to food may indicate higher mortality risk in grandsons

December 12, 2018
A paternal grandfather's access to food during his childhood is associated with mortality risk, especially cancer mortality, in his grandson, shows a large three-generational study from Stockholm University. The reason might ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.