Creating custom brains from the ground up

October 10, 2018, Children's Hospital Boston
Credit: CC0 Public Domain

Scientists studying how genetics impact brain disease have long sought a better experimental model. Cultures of genetically-modified cell lines can reveal some clues to how certain genes influence the development of psychiatric disorders and brain cancers. But such models cannot offer the true-to-form look at brain function that can be provided by genetically-modified mice.

Even then, carefully breeding mice to study how impact the has several drawbacks. The breeding cycles are lengthy and costly, and the desired gene specificity can only be verified—but not guaranteed—when mouse pups are born.

In today's Nature, scientists from Boston Children's Hospital and UC San Francisco describe a new way to create customized mouse models for studying the brain. First, a natural toxin can be used in mouse embryos to kill off the young brain cells that normally grow into the forebrain. The animals' developing forebrains can then be reconstituted from genetically engineered stem cells containing the specific genetic modifications desired for study.

This "forebrain substitution" results in fully functioning mouse pups that have tightly controlled genetics, allowing scientists to study how specific genes influence disorders of the brain with a greater degree of control.

"We think of this strategy as a completely new platform for neurobiologists to study many aspects of the brain, from basic knowledge of which genes control brain development to potentially finding new gene therapies for brain cancers and ," says Fred Alt, Ph.D., a co-senior author on the new paper and the director of the Boston Children's Program in Cellular and Molecular Medicine.

"Mice with embryonic-stem-cell-derived brain regions are indistinguishable from normal mice in memory and learning tasks," notes Bjoern Schwer, MD, Ph.D., a former trainee in Alt's lab who is now an assistant professor at UCSF and co-senior author on the paper.

Alt and his team, including Schwer, are also publishing a detailed set of instructions so that scientists around the world can rapidly implement the technique in their own neurobiology laboratories.

Studying gene breakage and rare brain diseases

A particular goal of the Alt lab in developing this technique is to use it as a platform to study a set of genes that they recently discovered are highly susceptible to breaking in mouse brain progenitor cells. They want determine the frequency and mechanisms by which these genes may break, and determine whether this breakage process contributes to neuropsychiatric diseases and brain cancers.

What's more, Alt and Schwer believe the technique could be implemented to aid personalized medicine. By creating custom mouse brain models, physician-scientists could mimic the unique genetic profile of undiagnosed patients with rare brain diseases and disorders.

Explore further: Scientists discover how RNA regulates genes in embryo that affect seizure susceptibility

More information: Neural blastocyst complementation enables mouse forebrain organogenesis, Nature (2018). DOI: 10.1038/s41586-018-0586-0 , https://www.nature.com/articles/s41586-018-0586-0

Related Stories

Scientists discover how RNA regulates genes in embryo that affect seizure susceptibility

August 23, 2018
Scientists at the Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago and colleagues discovered how a type of RNA, called Evf2 enhancer RNA, regulates key genes during a critical ...

How brain develops before birth is tightly controlled by RNA modification

September 28, 2017
A chemical tag added to RNA during embryonic development regulates how the early brain grows, according to research from the Perelman School of Medicine at the University of Pennsylvania. The findings are published this week ...

Genes for age-linked brain deterioration identified

March 5, 2018
A group of genes and genetic switches involved in age-related brain deterioration have been identified by scientists at the Babraham Institute, Cambridge and Sapienza University, Rome. The research, published online today ...

NeuroExpresso: Web app enables exploration of brain cell types

November 20, 2017
An online database of gene expression profiles for 36 major types of brain cells from 12 brain regions, based on mouse data from multiple laboratories, is reported in a new paper published in eNeuro. The tool is provided ...

Oxidative stress on the brain

August 24, 2017
Smith-Lemli-Opitz syndrome (SLOS) is a rare disease that occurs when patients inherit from both parents defects in the Dhcr7 gene, which encodes the last enzyme in the cholesterol biosynthesis pathway. A large portion of ...

Recommended for you

Scientists identify method to study resilience to pain

December 14, 2018
Scientists at the Yale School of Medicine and Veterans Affairs Connecticut Healthcare System have successfully demonstrated that it is possible to pinpoint genes that contribute to inter-individual differences in pain.

Parents' brain activity 'echoes' their infant's brain activity when they play together

December 13, 2018
When infants are playing with objects, their early attempts to pay attention to things are accompanied by bursts of high-frequency activity in their brain. But what happens when parents play together with them? New research, ...

In the developing brain, scientists find roots of neuropsychiatric diseases

December 13, 2018
The most comprehensive genomic analysis of the human brain ever undertaken has revealed new insights into the changes it undergoes through development, how it varies among individuals, and the roots of neuropsychiatric illnesses ...

Researchers find the cause of and cure for brain injury associated with gut condition

December 13, 2018
Using a mouse model of necrotizing enterocolitis (NEC)—a potentially fatal condition that causes a premature infant's gut to suddenly die—researchers at Johns Hopkins say they have uncovered the molecular causes of the ...

Researchers discover abundant source for neuronal cells

December 13, 2018
USC researchers seeking a way to study genetic activity associated with psychiatric disorders have discovered an abundant source of human cells—the nose.

How the brain tells you to scratch that itch

December 13, 2018
It's a maddening cycle that has affected us all: it starts with an itch that triggers scratching, but scratching only makes the itchiness worse. Now, researchers have revealed the brain mechanism driving this uncontrollable ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.