Research shows signalling mechanism in the brain shapes social aggression

October 19, 2018, Duke-NUS Medical School
Credit: martha sexton/public domain

Duke-NUS researchers have discovered that a growth factor protein, called brain-derived neurotrophic factor (BDNF), and its receptor, tropomyosin receptor kinase B (TrkB) affects social dominance in mice. The research has implications for understanding the neurobiology of aggression and bullying.

"Humans and rodents are social animals. Our every interaction follows rules according to a social hierarchy. Failure to navigate this hierarchy can be detrimental." explained senior author A/Prof. Hyunsoo Shawn Je, from the Neuroscience and Behavioural Disorders Signature Research Programme at Duke-NUS Medical School. "Our paper may be the first to demonstrate that specific molecular signalling pathways in specialised nerve cells, in a particular location in the , are important for the balanced navigation of social hierarchies."

Difficulties in navigating these hierarchies can lead to problems like aggression and bullying. "Given the heavy societal cost of bullying and aggression, understanding the biological causes is a step towards their effective prevention and treatment," A/Prof. Je added.

Activity within the brain is mediated by circuits made up of excitatory neurons, which ramp up activity, and GABA-ergic interneurons, which inhibit and quiet the excitatory activity. Previous studies have shown that BDNF-TrkB signalling is important for the maturation of GABA-ergic interneurons and the development of nerve circuits in the brain. But researchers have not been able to pinpoint the behavioural consequences of disrupted BDNF-TrkB signalling.

A/Prof. Je's team generated in which the TrkB receptor was removed specifically in the GABAergic interneurons in the area of the brain regulating emotional and social behaviour, known as the corticolimbic system. The transgenic exhibited unusual when housed together with . To understand the origin of this behaviour, the team conducted behavioural tests. They found that the mice were not being aggressive to protect their territory. They were also not being aggressive because they were stronger; the transgenic mice were injured more than other mice during acts of aggression. Instead, their aggressive behaviour was a result of increased fighting for status and dominance over other mice in the group.

The researchers found that due to the loss of BDNF-TrkB, GABA-ergic interneurons in these transgenic mice supplied weaker inhibition to surrounding excitatory cells, which became overactive. They proceeded to shut down excitatory neurons in a specific area of the transgenic mice brains, which re-established the "excitatory/inhibitory" balance and which "instantaneously reversed the abnormal ", says Duke-NUS post-doctoral research fellow Dr. Shawn Pang Hao Tan, who was the first author of the paper.

A significant amount of research has focused on the roles of family and peer networks on aggressive behaviour. This study, together with other recently published findings, demonstrates that genetic and biological factors can play an unexpected role in social behaviours, said Je.

Explore further: A protein could be key to preserving heart function in Duchenne muscular dystrophy

More information: Shawn Tan et al, Postnatal TrkB ablation in corticolimbic interneurons induces social dominance in male mice, Proceedings of the National Academy of Sciences (2018). DOI: 10.1073/pnas.1812083115

Related Stories

A protein could be key to preserving heart function in Duchenne muscular dystrophy

August 1, 2018
A protein known to drive nerve cell survival in the brain and spinal cord might also protect failing hearts in children and young adults with Duchenne muscular dystrophy, according to preliminary research presented at the ...

Delayed development of fast-spiking neurons linked to Fragile X

December 5, 2017
Northwestern Medicine scientists have discovered a delay in the maturation of fast-spiking neurons in the neonatal cortex of a mouse model of Fragile X syndrome, a human neurodevelopmental disorder.

Tug of war between Parkinson's protein and growth factor

September 18, 2017
Alpha-synuclein, a sticky and sometimes toxic protein involved in Parkinson's disease (PD), blocks signals from an important brain growth factor, Emory researchers have discovered.

Aggression neurons identified

May 25, 2018
High activity in a relatively poorly studied group of brain cells can be linked to aggressive behaviour in mice, a new study from Karolinska Institutet in Sweden shows. Using optogenetic techniques, the researchers were able ...

Repairing the brain: Two genes unlock potential for treatment of schizophrenia

September 18, 2015
Research led by scientists from Duke-NUS Graduate Medical School Singapore (Duke-NUS) has linked the abnormal behaviour of two genes (BDNF and DTNBP1) to the underlying cause of schizophrenia. These findings have provided ...

Plasma membrane protein may help generate new neurons in the adult hippocampus

May 11, 2017
New research published online in The FASEB Journal sheds important light on the inner workings of learning and memory. Specifically, scientists show that a plasma membrane protein, called Efr3, regulates brain-derived neurotrophic ...

Recommended for you

Neuroimaging study reveals 'hot spot' for cue-reactivity in substance-dependent population

November 20, 2018
When patients with dependence on alcohol, cocaine or nicotine are shown drug cues, or images related to the substance, an area of their brain known as the medial prefrontal cortex (mPFC) shows increased activity, report investigators ...

When storing memories, brain prioritizes those experiences that are most rewarding

November 20, 2018
The brain's ability to preserve memories lies at the heart of our basic human experience. But how does the brain's mechanism for memory make sure we remember the most significant events and not clog our minds with superfluous ...

To predict the future, the brain has two clocks

November 20, 2018
That moment when you step on the gas pedal a split second before the light changes, or when you tap your toes even before the first piano note of Camila Cabello's "Havana" is struck. That's anticipatory timing.

Researchers hope to be able to replace dysfunctional brain cells

November 20, 2018
A new study by researchers at Karolinska Institutet supports the theory that replacement of dysfunctional immune cells in the brain has therapeutic potential for neurodegenerative diseases like ALS and Alzheimer's disease. ...

White matter pathway and individual variability in human stereoacuity

November 20, 2018
Researchers in the Center for Information and Neural Networks (CiNet), the National Institute of Information and Communications Technology and Osaka University have identified a human white matter pathway associated with ...

Can genetic therapy help kids with Angelman syndrome overcome seizures?

November 20, 2018
Angelman syndrome is a genetic disease with no cure. Children grow up with severe intellectual disabilities and a range of other problems, arguably the worst of which are epileptic seizures. Now scientists at the UNC School ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.