Scientists accidentally reprogram mature mouse GABA neurons into dopaminergic-like neurons

October 11, 2018, Cell Press
Dr. Chun-Li Zhang and Lei-Lei Wang. Credit: David Gresham / UT Southwestern

Attempting to make dopamine-producing neurons out of glial cells in mouse brains, a group of researchers instead converted mature inhibitory neurons into dopaminergic cells. Their findings, appearing October 11 in the journal Stem Cell Reports, reveal that—contrary to previous belief—it is possible to reprogram one mature neuron type into another without first reverting it to a stem-cell-like state.

"Initially, I was a little disappointed that we converted medium spiny instead of glia," says first author Chun-Li Zhang, a professor of molecular biology at UT Southwestern Medical Center. "But when we realized the novelty of our results, we were kind of amazed. To our knowledge, changing the phenotype of resident, already-mature neurons has never been accomplished before."

Dopaminergic cells are important for controlling voluntary movement and emotions such as motivation and reward that drive behavior. They are often lost in movement disorders like Parkinson's disease. Many neuroscientists are interested in the therapeutic potential of creating new dopaminergic cells.

Zhang and his team attempted to induce the glia—cells surrounding neurons with protective and other functions—to morph inside live mouse brains. They injected a viral vector to express a cocktail of proteins into the striatum, a region of the brain rich in GABAergic neurons that help control muscle movement. The cocktail consisted of three transcription factors, NURR1, FOXA2, and LMX1A, which help decode genetic instructions for building dopaminergic neurons. The mice were also treated with valproic acid, which was previously shown to play a role in cell reprogramming.

Dr. Chun-Li Zhang and Lei-Lei Wang. Credit: David Gresham / UT Southwestern

The team targeted due to their ability to regenerate and multiply more readily than neurons, theoretically making them better therapeutic candidates. But when they looked at the brain slices of the injected mice, they found the glia unchanged. Instead, some GABAergic medium spiny neurons—cells that are directly controlled by dopaminergic neurons—had transformed.

The new cells appeared to behave more like native dopaminergic neurons, although they also retained residual features of the medium spiny neurons. They showed rhythmic activity and formed network connections similarly to cells, as the researchers discovered through electrode recordings and reporter assays.

Subsequent immunohistochemistry and reporter assays revealed that the new sprung from mature medium spiny neurons without passing through a proliferative progenitor stage.

Induced dopaminergic neurons in green. Credit: Lei-Lei Wang / UT Southwestern
"Our results offer a new perspective on neuronal plasticity," says Zhang. "We traditionally think of mature cell identity and function as fixed, but our findings suggest that they are more dependent on biochemical factors in their environment than we thought. This could mean that no cell type is fixed even for a functional, mature neuron."

Zhang and his team next seek to address some of the limitations of their findings by clarifying the exact reprogramming mechanism and, of course, identifying the conditions that can reprogram glia into , as they originally sought.

"We hope that the ability to change neuron identity will someday be directed to treat neurological diseases, including Parkinson's disease," says Zhang.

Explore further: Fly protein has protective effect on dopaminergic neurons

More information: Stem Cell Reports, Zhang et al.: "Phenotypic reprogramming of striatal neurons into dopaminergic neuron-like cells in the adult mouse brain" https://www.cell.com/stem-cell-reports/fulltext/S2213-6711(18)30389-8 , DOI: 10.1016/j.stemcr.2018.09.004

Related Stories

Fly protein has protective effect on dopaminergic neurons

October 3, 2018
Parkinson's disease is a neurodegenerative disorder that affects dopamine-producing or dopaminergic neurons. The progressive loss of these neurons is what leads to impairment in movement coordination in those suffering from ...

Improving cell replacement therapy for Parkinson's disease

August 23, 2018
Parkinson's disease is a neurodegenerative disease that affects dopamine signaling neurons in patients' brains. Cell-replacement therapy shows some promise as a treatment for Parkinson's. A recent paper in the journal Molecular ...

Analysis of sea squirt embryo reveals key molecules in dopaminergic neuron differentiation

September 20, 2018
Researchers at the University of Tsukuba have revealed two molecules in the brain of a sea squirt that specify the development of a hypothalamus-like region, also shedding light on how different parts of the brain form in ...

Stem cell-derived dopaminergic neurons rescue motor defects in Parkinsonian monkeys

December 3, 2012
Parkinson's disease is a degenerative disorder of the central nervous system that is characterized by tremors, rigidity, slowness of movement, and difficulty walking. It is caused by loss of the neurons that produce the neurotransmitter ...

The dopamine advantage

June 20, 2016
The junctions between nerve cells responsible for releasing and receiving dopamine in the brain are a surprising mismatch that gives this chemical a strong competitive advantage.

Recommended for you

Attention, please! Anticipation of touch takes focus, executive skills

December 12, 2018
Anticipation is often viewed as an emotional experience, an eager wait for something to happen.

Study highlights potential benefits of continuous EEG monitoring for infant patients

December 12, 2018
A recent retrospective study evaluating continuous electroencephalography (cEEG) of children in intensive care units (ICUs) found a higher than anticipated number of seizures. The work also identified several conditions closely ...

The importins of anxiety

December 11, 2018
According to some estimates, up to one in three people around the world may experience severe anxiety in their lifetime. In a study described today in Cell Reports, researchers at the Weizmann Institute of Science have revealed ...

How returning to a prior context briefly heightens memory recall

December 11, 2018
Whether it's the pleasant experience of returning to one's childhood home over the holidays or the unease of revisiting a site that proved unpleasant, we often find that when we return to a context where an episode first ...

Neurons in the brain work as a team to guide movement of arms, hands

December 11, 2018
The apparent simplicity of picking up a cup of coffee or turning a doorknob belies the complex sequence of calculations and processes that the brain must undergo to identify the location of an item in space, move the arm ...

Using neurofeedback to prevent PTSD in soldiers

December 11, 2018
A team of researchers from Israel, the U.S. and the U.K. has found that using neurofeedback could prevent soldiers from experiencing PTSD after engaging in emotionally difficult situations. In their paper published in the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.