In tiny worms, researchers find spiking neurons—and clues about brain computation

October 3, 2018 by Katherine Fenz, Rockefeller University
Researchers have mapped all 302 neurons that make up the C. elegans nervous system. However, until now, they had never observed action potentials in these cells. Credit: Qiang Liu/The Rockefeller University

Contrary to popular belief, the brain is not a computer. However brains do, in their own way, compute. They integrate informational inputs to generate outputs, including behaviors, thoughts, and feelings.

To process vast amounts of data, the brain uses a kind of digital code. Its cells produce discrete bursts of electric current, known as action potentials, that function as the zeros and ones of the nervous system. This code is assumed to be a vital aspect of computation in animals—that is, in most animals. The tiny roundworm C. elegans has long been considered a curious exception; until now, action potentials had never been observed in the organism.

But in a recent study, Rockefeller scientist Cori Bargmann and her colleagues, Qiang Liu, Phil Kidd, and May Dobosiewicz, discovered, among other things, a C. elegans olfactory neuron that produces action potentials. The finding, published in Cell, overturns decades of dogma and could help scientists understand fundamental principles of brain computation.

Trial by fire

Neurons communicate with one another by exchanging chemical messages. Each message alters the state of the receiving cell; and as a neuron collects more and more chemical input, it approaches a threshold of activation. An action potential occurs when the cell reaches this threshold, at which point the neuron is said to "fire" or "spike" as an electrical impulse ripples through its extremity. In producing this spike, the cell translates analog chemical messages into digital electric code.

Despite the apparent importance of action potentials, for years researchers believed that C. elegans and other nematodes simply didn't use this information processing strategy.

"There's this whole class of animals where the didn't seem to spike," says Bargmann, the Torsten N. Wiesel Professor. "So our question was: Well, what do these neurons do?" Seeking an answer, her team set out to measure the electrical behavior of C. elegans neurons—every single one of them, if necessary.

"The C. elegans has just 302 neurons, so it's one of the few animals where you can look at each individual neuron," says Liu, a research assistant professor in Bargmann's lab who set out to measure how all of these neurons respond to stimulation.

Almost immediately, Liu was met with a surprise. While stimulating AWA, a neuron that processes smell signals, he observed that the cell's electrical voltage rose very rapidly before dramatically plummeting. Though unexpected, this dynamic was also very familiar: it looked like an action potential.

A neuron with potential

Additional experiments confirmed that AWA neurons indeed spike. The researchers suspect that other C. elegans cells also produce action potentials; yet they note that this is not the norm for this animal's neurons. In fact, their experiments revealed that even AWA fires rather infrequently. Typically, the neuron responds to odors in a more subtle, graded manner. Liu observed action potentials only during experiments in which the stimulus grew stronger over time, suggesting that in nature, AWA fires when the animal is approaching the source of an important smell.

"Here we have a neuron that encodes information in two ways: one way that is slower and graded, and one way that's very nonlinear and sharply tuned to particular circumstances," says Bargmann. "And this lets us see what a spike might be uniquely important for."

While this study initiates C. elegans into the ranks of spike-producing animals, the observed in this organism were not identical to those seen elsewhere. To define the characteristics of worm-specific spikes, postdoctoral associate Phil Kidd created a mathematical model of AWA's electrical dynamics—a step that, the scientists hope, will allow their research to enter into conversation with other advances in computational neuroscience.

"There's a huge field of people working on the coding and computational principles of nervous systems," says Kidd. "And our work with C. elegans is likely to uncover principles that were unfamiliar to scientists who have been working in these areas for a long time."

This line of research indeed has the potential to both expand scientific understanding of C. elegans, and of nervous systems at large.

"Computation in the brain is a deep and important problem," says Bargmann. "With this study, we've shown that C. elegans can help solve this puzzle—and in fact, we've already exposed a whole new piece of it."

Explore further: Scientists investigate how DEET confuses countless critters

More information: Qiang Liu et al, C. elegans AWA Olfactory Neurons Fire Calcium-Mediated All-or-None Action Potentials, Cell (2018). DOI: 10.1016/j.cell.2018.08.018

Related Stories

Scientists investigate how DEET confuses countless critters

September 26, 2018
DEET, thought to be the most effective insect repellent available, may not be an insect repellent at all.

Flashing neurons in worms reveal how the brain generates behavior

October 4, 2017
The 100 billion neurons of the human brain control our behavior, but so far there is no way to keep track of all that activity, cell by cell. Whole-brain imaging techniques like fMRI offer only a blurry view of the action, ...

Researchers provide first peek at how neurons multitask

November 6, 2014
Researchers at the University of Michigan have shown how a single neuron can perform multiple functions in a model organism, illuminating for the first time this fundamental biological mechanism and shedding light on the ...

For worms, positive thinking is the key to finding food

September 15, 2015
Caenorhabditis elegans, a tiny roundworm, spends much of its lifetime searching for soil bacteria to eat. This humble creature possesses 302 neurons, which may not seem like a lot compared to the billions of nerve cells that ...

Beyond recognizing odors, a single neuron controls reactions

October 21, 2008
(PhysOrg.com) -- Babies will smile when they catch the scent of vanilla, but a whiff of rotting meat will send them into fits. From people to mice and flies to worms, animals of all kinds are born with likes and dislikes ...

Keeping the excitement under control

April 18, 2018
James Poulet's lab at the MDC uses advanced techniques to monitor the activity of networks of single sensory neurons in the brain. By listening in on hundreds of conversations, the scientists have discovered how a single ...

Recommended for you

Wiring diagram of the brain provides a clearer picture of brain scan data

December 14, 2018
Already affecting more than five million Americans older than 65, Alzheimer's disease is on the rise and expected to impact more than 13 million people by 2050. Over the last three decades, researchers have relied on neuroimaging—brain ...

Scientists identify method to study resilience to pain

December 14, 2018
Scientists at the Yale School of Medicine and Veterans Affairs Connecticut Healthcare System have successfully demonstrated that it is possible to pinpoint genes that contribute to inter-individual differences in pain.

Parents' brain activity 'echoes' their infant's brain activity when they play together

December 13, 2018
When infants are playing with objects, their early attempts to pay attention to things are accompanied by bursts of high-frequency activity in their brain. But what happens when parents play together with them? New research, ...

In the developing brain, scientists find roots of neuropsychiatric diseases

December 13, 2018
The most comprehensive genomic analysis of the human brain ever undertaken has revealed new insights into the changes it undergoes through development, how it varies among individuals, and the roots of neuropsychiatric illnesses ...

Researchers find the cause of and cure for brain injury associated with gut condition

December 13, 2018
Using a mouse model of necrotizing enterocolitis (NEC)—a potentially fatal condition that causes a premature infant's gut to suddenly die—researchers at Johns Hopkins say they have uncovered the molecular causes of the ...

Researchers discover abundant source for neuronal cells

December 13, 2018
USC researchers seeking a way to study genetic activity associated with psychiatric disorders have discovered an abundant source of human cells—the nose.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.