Cell growth rate and gene expression shed light on why some tumor cells survive treatment

November 30, 2018 by Anne Trafton, Massachusetts Institute of Technology
MIT engineers have designed a system that can repeatedly measure cancer cells as they flow through an array of mass sensors. Once the cells reach the end, they are collected for RNA-sequencing. Credit: Massachusetts Institute of Technology

By studying both the physical and genomic features of cancer cells, MIT researchers have come up with a new way to investigate why some cancer cells survive drug treatment while others succumb.

Their new approach, which combines measurements of cell mass and growth rate with analysis of a cell's gene expression, could be used to reveal new drug targets that would make cancer treatment more effective. Exploiting these targets could help knock out the defenses that cells use to overcome the original , the researchers say.

In a paper appearing in the Nov. 28 issue of the journal Genome Biology, the researchers identified a growth signaling pathway that is active in glioblastoma cells that are resistant to an experimental type of drug known as an MDM2 inhibitor.

"By measuring a cell's mass and growth rate immediately prior to single-cell RNA-sequencing, we can now use a cell's 'fitness' to classify it as responsive or nonresponsive to a drug, and to relate this to underlying molecular pathways," says Alex K. Shalek, the Pfizer-Laubach Career Development Assistant Professor of Chemistry, a member of MIT's Institute for Medical Engineering and Science (IMES), an extramural member of the Koch Institute for Integrative Cancer Research, and an associate member of the Ragon and Broad Institutes.

Shalek and Scott Manalis, the Andrew and Erna Viterbi Professor in the MIT departments of Biological Engineering and Mechanical Engineering and a member of the Koch Institute, are the senior authors of the study. The paper's lead author is Robert Kimmerling, a recent MIT Ph.D. recipient.

Cancer cell analysis

About a decade ago, Manalis' lab invented a technology that allows researchers to measure the mass of single cells. In recent years, they have adapted the device, which measures cells' masses as they flow through tiny channels, so that it can also measure cell growth rates by repeatedly weighing the cells over short periods of time.

Last year, working with researchers at Dana-Farber Cancer Institute (DFCI), Manalis and his colleagues used this approach to test drug responses of tumor cells from patients with multiple myeloma, a type of blood cancer. After treating the cells with three different drugs, the researchers measured the cells' growth rates and found they were correlated with the cells' susceptibility to the treatment.

"Single-cell biophysical properties such as mass and growth rate provide early indicators of drug response, thereby offering the potential to delineate sensitive cells from resistant cells while they are still viable," Manalis says.

In their new study, the researchers wanted to add a genomic component, which they hoped could help reveal why only certain cells are susceptible to a particular drug. "We wanted to be able to take those measurements and add on some of the biological context for why a cell is growing a certain way or behaving a certain way," Kimmerling says.

To accomplish this, Kimmerling and Manalis teamed up with Shalek, who has extensive experience in sequencing the messenger RNA (mRNA) of individual cells. This information can provide a snapshot of which genes are being expressed in a single cell at a particular moment.

The researchers modified the cell-weighing system so that cells would be spaced evenly as they flowed through, making it easier to collect them one at a time when they exit the system. The cells are weighed several times over the course of 20 minutes to determine growth rate, and as soon as they reach the end of the channel, they are immediately captured and ruptured to release their RNA for analysis. Shalek's lab then sequenced the RNA of each of the cells. This approach enabled the mass and growth rate of each cell to be directly linked to its gene expression.

Once they had the system working, the researchers collaborated with Keith Ligon and his lab at DFCI to analyze derived from a patient with glioblastoma, an aggressive type of brain . The researchers treated the cells with an MDM2 inhibitor, a type of drug that helps to boost the function of p53, a protein that helps cells stop tumor formation. Such drugs are now in clinical trials to treat glioblastoma. In animal studies, this drug has been effective against tumors, but the tumors often grow back later.

In this study, the researchers hoped to find out why some cells survive MDM2 treatment. They treated the cells, measured their growth rates about 16 hours after the treatment, and then sequenced their RNA. "Before the cells have lost viability, we can measure their mass and their to reveal drug response heterogeneity to that treatment, and then link that with their gene expression," Kimmerling says.

Importantly, the researchers found subpopulations of cells that were not responsive to the drug. RNA sequencing revealed that in cells that were responsive, genes required for programmed cell death were turned on. Meanwhile, in cells that did not seem to be vulnerable to the drug, genes involved in mTOR, a signaling pathway involved in growth and survival, were turned up.

"What we're excited about here is we now have this list of biological targets to look into," Kimmerling says. "We can start to generate testable hypotheses from these signatures that are more highly expressed in the cells that continue to grow after drug treatment."

Possible drug targets

The researchers now plan to explore the possibility of targeting some of the genes that were turned up on the nonresponding cells, in hopes of developing drugs that could be used together with the original MDM2 inhibitor. They also hope to adapt this approach for other types of cancers. Some, such as blood cancers, are easier to study than solid tumors, which are more difficult to separate into single cells.

"The hope is that we'll be able to apply this technology to any sample that can be dissociated into a single-cell population," Kimmerling says.

Another possible application of the cell- measurement technology is studying tumor from individual patients to try to predict how they will respond to a particular . Kimmerling, Manalis, and others have founded a company called Travera, which has licensed the technology and hopes to develop it for patient use. The company is currently not working on the RNA sequencing aspect of the technology, but that element could also be valuable to incorporate in the future, Kimmerling says.

Explore further: Cell-weighing method could help doctors choose cancer drugs

More information: Robert J. Kimmerling et al. Linking single-cell measurements of mass, growth rate, and gene expression, Genome Biology (2018). DOI: 10.1186/s13059-018-1576-0

Related Stories

Cell-weighing method could help doctors choose cancer drugs

November 20, 2017
Doctors have many drugs available to treat multiple myeloma, a type of blood cancer. However, there is no way to predict, by genetic markers or other means, how a patient will respond to a particular drug. This can lead to ...

Device can predict tumor responses by measuring cell growth after drug exposure

October 10, 2016
Choosing the best treatment for a cancer patient is often an inexact science. Drugs that work well for some patients may not help others, and tumors that are initially susceptible to a drug can later become resistant.

Identification of PTPRZ as a drug target for cancer stem cells in glioblastoma

July 19, 2017
Glioblastoma is a malignant brain tumor with high mortality. Cancer stem cells are thought to be crucial for tumor initiation and its recurrence after standard therapy with radiation and temozolomide (TMZ) chemotherapy. Protein ...

ONC201 may inhibit cancer stem cell self-renewals by altering their gene expression

August 2, 2017
ONC201 may inhibit cancer stem cell self-renewals by altering their gene expression, according to a study published August 2, 2017 in the open-access journal PLOS ONE by Varun Vijay Prabhu from Oncoceutics, Inc., USA and ...

Recommended for you

Researchers use computer model to predict prostate cancer progression

December 12, 2018
An international team of cancer researchers from Denmark and Germany have used cancer patient data to develop a computer model that can predict the progression of prostate cancer. The model is currently being implemented ...

New understanding of mysterious 'hereditary swelling'

December 12, 2018
For the first time ever, biomedical researchers from Aarhus University, Denmark, report cellular defects that lead to a rare disease, hereditary angioedema (HAE), in which patients experience recurrent episodes of swelling ...

Pushing closer to a new cancer-fighting strategy

December 11, 2018
A molecular pathway that's frequently mutated in many different forms of cancer becomes active when cells push parts of their membranes outward into bulging protrusions, Johns Hopkins researchers report in a new study. The ...

Receiving genetic information can change risk

December 11, 2018
Millions of people in the United States alone have submitted their DNA for analysis and received information that not only predicts their risk for disease but, it turns out, in some cases might also have influenced that risk, ...

Scientists have identified and modelled a distinct biology for paediatric AML

December 11, 2018
Scientists have identified and modelled a distinct biology for paediatric acute myeloid leukaemia, one of the major causes of death in children.

HER2 mutations can cause treatment resistance in metastatic ER-positive breast cancer

December 11, 2018
Metastatic breast cancers treated with hormone therapy can become treatment-resistant when they acquire mutations in the human epidermal growth factor receptor 2 (HER2) that were not present in the original tumor, reports ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.