Healthy blood stem cells have as many DNA mutations as leukemic cells

November 29, 2018, Princess Máxima Center for Pediatric Oncology
Osorio et al. report lifelong mutationaccumulation in human hematopoieticstem and progenitor cells, which isexplained by three distinct mutationalsignatures. Shared somatic mutationsbetween cells of the same donor enablethe construction of a developmentallineage tree and quantification of eachbranch to mature blood cell populations. Credit: Osorio et al., Cell Reports, 2018

Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ. Rather, the location of DNA mutations is relevant. Using the mutation patterns in hematopoietic stem and progenitor cells (HSPCs), the team was able to trace the developmental lineage tree of the cells.

Van Boxtel, together with his team, studied healthy from seven people of different ages. "Blood stem cells divide about once every 40 weeks," says Van Boxtel, "and we saw that eleven mutations occur during one division." The older the test subject, the more mutations the researchers found, because the mutations accumulate over the years. Yet, these people were healthy.

Nevertheless, mutations in blood stem cells may also lead to leukemia. "We thought that people with leukemia would have more mutations than healthy people," says Van Boxtel, "but this is not the case." The HSPCs of patients with (AML) contain as many mutations as those from . The researchers published their results in the open access journal Cell Reports.

Developmental lineage tree

The researchers were also able to trace the developmental lineage tree of hematopoiesis using the mutation pattern of HSPCs. "If you study the pattern of mutations of a cancer cell, you can figure out which cell it comes from," explains Van Boxtel. "We have shown this for HSPCs now, but especially for solid tumors, the origin of the cancer cell is relevant for selecting the most effective treatment strategy."

The technique has a lot of potential, according to the authors. The next step for Van Boxtel and his team will be to study the origin of causative mutations in second cancers in survivors of pediatric cancer.

"So far, we assumed that new mutations occur as a result of intensive treatment during childhood and cause second cancers later in life. We can now test whether these mutations are indeed new or already existed and contributed to both incidences of cancer. This is relevant knowledge when making a treatment plan for children with cancer."

Explore further: Hundreds of genetic mutations found in healthy blood of a supercentenarian

More information: Fernando G. Osorio et al, Somatic Mutations Reveal Lineage Relationships and Age-Related Mutagenesis in Human Hematopoiesis, Cell Reports (2018). DOI: 10.1016/j.celrep.2018.11.014

Related Stories

Hundreds of genetic mutations found in healthy blood of a supercentenarian

April 23, 2014
Genetic mutations are commonly studied because of links to diseases such as cancer; however, little is known about mutations occurring in healthy individuals. In a study published online in Genome Research, researchers detected ...

Hundreds of random mutations in leukemia linked to aging, not cancer

July 19, 2012
Hundreds of mutations exist in leukemia cells at the time of diagnosis, but nearly all occur randomly as a part of normal aging and are not related to cancer, new research shows.

Two-faced leukemia?

December 12, 2011
One kind of leukemia sometimes masquerades as another, according to a study published online this week in the Journal of Experimental Medicine.

Family tree of blood production reveals hundreds of thousands of stem cells

September 5, 2018
Adult humans have many more blood-creating stem cells in their bone marrow than previously thought, ranging between 50,000 and 200,000 stem cells. Researchers from the Wellcome Sanger Institute and Wellcome—MRC Cambridge ...

Blood mutations could contaminate genetic analyses of tumors

June 5, 2018
Genetic mutations in blood cells that have made their way into tumors could be red herrings that mislead physicians looking for genetic changes in tumors that are helping to drive the cancer. This finding is significant because ...

Timing of mutation determines the outcome

June 30, 2017
A single genetic mutation can lead to completely different diseases, depending on the time and location at which the mutation occurs. This finding emerged from the PhD study conducted by Rocio Acuña-Hidalgo of Radboudumc. ...

Recommended for you

Potential seen for tailoring treatment for acute myeloid leukemia

December 8, 2018
Advances in rapid screening of leukemia cells for drug susceptibility and resistance are bringing scientists closer to patient-tailored treatment for acute myeloid leukemia (AML).

Study may offer doctors a more effective way to treat neuroblastoma

December 7, 2018
A very large team of researchers, mostly from multiple institutions across Germany, has found what might be a better way to treat patients with neuroblastoma, a type of cancer. In their paper published in the journal Science, ...

Inflammatory bowel disease linked to prostate cancer

December 7, 2018
Men with inflammatory bowel disease have four to five times higher risk of being diagnosed with prostate cancer, reports a 20-year study from Northwestern Medicine.

'Chemo brain' caused by malfunction in three types of brain cells, study finds

December 6, 2018
More than half of cancer survivors suffer from cognitive impairment from chemotherapy that lingers for months or years after the cancer is gone. In a new study explaining the cellular mechanisms behind this condition, scientists ...

Scientists develop new technology for profiling unique genetic makeup of myeloma tumor cells

December 6, 2018
Cancer arises when cells lose control. Deciphering the "blueprint" of cancer cells—outlining how cancer cells hijack specific pathways for uncontrolled proliferation—will lead to more efficient ways to fight it. Joint ...

Putting the brakes on tumor stealth

December 6, 2018
New research undertaken at Monash University has shed new light on how some cancers are able to escape our immune system.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.