Researchers solve mystery surrounding a form of Batten disease

November 5, 2018, Baylor College of Medicine
Dr. Marco Sardiello, the corresponding author of this work Credit: Baylor College of Medicine

A team led by researchers at Baylor College of Medicine has uncovered an unexpected mechanism that can explain a form of Batten disease called neuronal ceroid lipofuscinosis 8. The findings published in the journal Nature Cell Biology provide potential new targets for future therapeutic interventions for this rare and incurable disease.

"Batten disease refers to a group of diseases that are part of the lysosomal storage disorders. At the core of these conditions are problems with the cell's ability to clear the waste produced by its regular functions, which leads to the accumulation of cellular waste to toxic levels," said first author Dr. Alberto di Ronza, who was a postdoctoral researchers in the Sardiello lab while he was working on this project.

The lysosomes are the structures in charge of clearing the waste. Lysosomes are sacs containing enzymes, a type of proteins that break down cellular waste into its constituent components, which the cell can recycle or discard. When lysosomes fail and cellular waste accumulates, disease follows.

"When we started this project, we knew that neuronal ceroid lipofuscinosis 8 was associated with defects in the CLN8 protein, but we didn't know how the defects led to the disease," said corresponding author Dr. Marco Sardiello, assistant professor of molecular and human genetics at Baylor.

It was a mystery because CLN8 is not located in the . It works in a completely different part of the cell, called the endoplasmic reticulum, which is where many molecules, including lysosomal enzymes, are synthesized in the cell. The mystery was how mutations in a protein that is not in the lysosome would result in a .

Discovering a new fundamental mechanism

To solve the mystery, the researchers first looked for proteins that would assist on the exit of lysosomal enzymes from the endoplasmic reticulum en route to the lysosomes.

"We narrowed it down to four candidates and CLN8 was one of them. It was the only one that interacted with two-thirds of the lysosomal enzymes we tested," di Ronza said.

Then, the researchers worked with mice carrying defective CLN8 molecules, a mouse model that recapitulates many of the characteristics of the disease observed in humans. They determined that in these mice the lysosomes have fewer lysosomal enzymes.

"Things started to click," Sardiello said. "If CLN8 in the endoplasmic reticulum mediated transfer of lysosomal enzymes, then having defective CLN8 proteins could explain why fewer enzymes make it to the lysosome."

In addition, the researchers discovered that a specific piece of CLN8 acts like a hook, 'catching' lysosomal enzymes to facilitate their exit from the endoplasmic reticulum. They also identified the molecular signals that help CLN8 move from the to its destination and back. These discoveries open potential new therapeutic interventions.

"I started this research because I wanted to contribute to improve patients' lives," di Ronza said. "Patients with CLN8 defects have limited options, but I hope that this work will provide opportunities to explore potential new therapies for these patients."

"Co-author Lauren Popp and I were very excited to contribute to this study that elucidated a novel mechanism of lysosomal formation," said co-author Dr. Laura Segatori, associate professor of chemical and biomolecular engineering at Rice University. "Our group has focused on understanding and manipulating the mechanisms controlling processing of lysosomal proteins. I am excited that this study provides novel findings that are likely to change the way we approach the study and treatment of lysosomal storage disorders."

"The solution to this mystery was completely unexpected," Sardiello said. "We identified a new fundamental biological process that, when is disturbed, leads to this form of lysosome storage disease. This discovery is relevant not only to the Batten community, but also to other scientific communities studying basic mechanisms of the cell."

Explore further: Genetic defects in the cell's 'waste disposal system' linked to Parkinson's disease

More information: Alberto di Ronza et al, CLN8 is an endoplasmic reticulum cargo receptor that regulates lysosome biogenesis, Nature Cell Biology (2018). DOI: 10.1038/s41556-018-0228-7

Related Stories

Genetic defects in the cell's 'waste disposal system' linked to Parkinson's disease

November 14, 2017
An international study has shed new light on the genetic factors associated with Parkinson's disease, pointing at a group of lysosomal storage disorder genes as potential major contributors to the onset and progression of ...

Research reveals strategy to potentially treat juvenile Batten disease

February 6, 2017
Researchers at Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital and King's College London have discovered a treatment that improves the neurological symptoms in a ...

Simple sugar delays neurodegeneration caused by enzyme deficiency

June 20, 2018
A new therapeutic approach may one day delay neurodegeneration typical of a disease called mucopolysaccharidoses IIIB (MPS IIIB). Neurodegeneration in this condition results from the abnormal accumulation of essential cellular ...

Doctoral student's research looks at cause of neurodegenerative disease

March 3, 2017
A Kansas State University student hopes her research on a currently untreatable and progressive neurodegenerative disease will one day lead to treatment options.

Orchestrator of waste removal rescues cells that can't manage their trash

September 1, 2011
Just as we must take out the trash to keep our homes clean and safe, it is essential that our cells have mechanisms for dealing with wastes and worn-out proteins. When these processes are not working properly, unwanted debris ...

Surprising culprit found in cell recycling defect

February 20, 2014
(Medical Xpress)—To remain healthy, the body's cells must properly manage their waste recycling centers. Problems with these compartments, known as lysosomes, lead to a number of debilitating and sometimes lethal conditions.

Recommended for you

When storing memories, brain prioritizes those experiences that are most rewarding

November 20, 2018
The brain's ability to preserve memories lies at the heart of our basic human experience. But how does the brain's mechanism for memory make sure we remember the most significant events and not clog our minds with superfluous ...

Scientists identify new genetic causes linked to abnormal pregnancies and miscarriages

November 20, 2018
A team of scientists at the Research Institute of the McGill University Health Centre (RI-MUHC) and McGill University have identified three genes responsible for recurrent molar pregnancies, a rare complication that occurs ...

A study suggests that epigenetic treatments could trigger the development of aggressive tumours

November 20, 2018
A study headed by the Institute for Research in Biomedicine (IRB Barcelona) and published in the journal Nature Cell Biology examined whether the opening of chromatin (a complex formed by DNA bound to proteins) is the factor ...

New immunotherapy improves MS symptoms

November 20, 2018
A world-first clinical trial of a new cellular immunotherapy for multiple sclerosis (MS) has improved symptoms and quality of life for the majority of patients.

To predict the future, the brain has two clocks

November 20, 2018
That moment when you step on the gas pedal a split second before the light changes, or when you tap your toes even before the first piano note of Camila Cabello's "Havana" is struck. That's anticipatory timing.

White matter pathway and individual variability in human stereoacuity

November 20, 2018
Researchers in the Center for Information and Neural Networks (CiNet), the National Institute of Information and Communications Technology and Osaka University have identified a human white matter pathway associated with ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.