Early spatial attention deployment toward and away from aggressive voices

December 7, 2018, University of Geneva
Participant equipped with the EEG to measure the electrical activity of the brain. Credit: UNIGE

Sight and hearing are the two main sensory modalities allowing us to interact with our environment. But what happens within the brain when it perceives a threatening signal, such as an aggressive voice? How does it distinguish a threatening voice from the surrounding noise? How does it process this information?

To answer these questions, researchers from the University of Geneva (UNIGE), Switzerland, studied during the processing of various emotional voices. They discovered that we notice a voice much faster when it is considered threatening than when it is perceived as normal or happy. Our attention is more focused on threatening voices to enable us to clearly recognize the location of the potential threat. This study, published in the journal Social, Cognitive and Affective Neuroscience, demonstrates the resources leveraged by our brain when we sense danger to allow for adequate survival behavior.

Sight and hearing are the two senses that allow human beings to detect threatening situations. Although sight is critical, it does not allow for a 360-degree coverage of the surrounding space—unlike hearing. "That's why we are interested in how fast our attention responds to the different intonations of the voices around us and how our brain deals with potentially threatening situations," explains Nicolas Burra, a researcher in the psychology section of the Faculty of Psychology and Education Sciences (FPSE) at UNIGE.

To examine the brain's response to threats in the auditory environment, the researchers presented 22 short human voice sounds (600 milliseconds) that were neutral utterances or expressed either anger or joy. Using two loudspeakers, these sounds were presented to 35 participants while an electroencephalogram (EEG) measured in the brain down to the millisecond. More specifically, the researchers focused on the electrophysiological components related to auditory attentional processing. "Each participant heard two sounds simultaneously: two neutral voices, one neutral and one angry voice, or one neutral and one happy . When they perceived anger or joy, they had to respond by pressing a key on a keyboard as accurately and quickly as possible," explains Leonardo Ceravolo, researcher at UNIGE's Swiss Centre for Affective Sciences. "We then measured the intensity of brain activity when attention is focused on the different sounds, as well as the duration of this focus before a return to the basic state," he adds.

Using data from the EEG, the researchers examined the appearance of a cerebral marker of auditory attention called N2ac. As Nicolas Burra explains, "When the brain perceives an emotional target sound, N2ac activity is triggered after 200 milliseconds. However, when it perceives anger, the N2ac is amplified and lasts longer, which is not the case for joy!"

Subsequently, after 400 milliseconds, our attention must disengage from the emotional vocal stimulus. At this moment, a cerebral marker of auditory attention, called LPCpc, intervenes. Interestingly enough, LPCpc activity is also stronger for angry than for happy voices. Why? "Anger can signal a potential threat, which is why the brain analyzes these kinds of stimuli for a longer time. In an auditory environment, this mechanism allows us to not become alarmed at the slightest potentially threatening noise or, conversely, to adopt the most appropriate behavior in case of danger. These extra milliseconds of attention are, therefore, crucial to the accurate interpretation of a threat in a complex auditory environment," says Ceravolo.

This additional temporal cost was also evident in the participants' response times. When they had to indicate that they perceived anger, it took them longer than when they did so for joy. In contrast, brain activity was enhanced in the case of angry stimuli. Does it sound conflicting? "No. The explanation is logical. As in the brain remains focused on the threatening sound, the motor response via the keyboard is delayed," says Nicolas Burra.

In summary, this study demonstrated for the first time that in a few hundred milliseconds, our is sensitive to the presence of angry voices. This rapid detection of the source of a potential threat in a complex environment is essential, as it is "critical in crisis situations and a great advantage for our survival," concludes Ceravolo.

Explore further: Babies make the link between vocal and facial emotion

More information: Nicolas Burra et al. Early spatial attention deployment toward and away from aggressive voices, Social Cognitive and Affective Neuroscience (2018). DOI: 10.1093/scan/nsy100

Related Stories

Babies make the link between vocal and facial emotion

April 11, 2018
The ability of babies to differentiate emotional expressions appears to develop during their first six months. But do they really recognise emotion or do they only distinguish the physical characteristics of faces and voices? ...

Voices and emotions: the forehead is the key

December 13, 2017
Gestures and facial expressions betray our emotional state but what about our voices? How does simple intonation allow us to decode emotions – on the telephone, for example? By observing neuronal activity in the brain, ...

Human sounds convey emotions clearer and faster than words

January 19, 2016
It takes just one-tenth of a second for our brains to begin to recognize emotions conveyed by vocalizations, according to researchers from McGill. It doesn't matter whether the non-verbal sounds are growls of anger, the laughter ...

Brain-computer interface could improve hearing aids

January 31, 2017
(Phys.org)—Researchers are working on the early stages of a brain-computer interface (BCI) that can tell who you're listening to in a room full of noise and other people talking. In the future, the technology could be incorporated ...

Visual cues amplify sound

February 13, 2018
Looking at someone's lips is good for listening in noisy environments because it helps our brains amplify the sounds we're hearing in time with what we're seeing, finds a new UCL-led study.

Our ability to focus on one voice in crowds is triggered by voice pitch

October 10, 2017
Scientists have discovered that a group of neurons in the brain's auditory stem help us to tune into specific conversations in a crowded room.

Recommended for you

What prevents remyelination? New stem cell research reveals a critical culprit

December 18, 2018
New research on remyelination, the spontaneous regeneration of the brain's fatty insulator that keeps neurons communicating, could lead to a novel approach to developing treatments for multiple sclerosis (MS) and other inflammatory ...

Gene variant found in brain complicit in MS onset

December 18, 2018
Multiple sclerosis (MS) is an autoimmune disease affecting the function of the central nervous system. Up to now, most of the 230 genetic variants associated with the disease have been linked to changes in immune cells. However, ...

Biologists identify promising drug for ALS treatment

December 18, 2018
A drug typically used to treat hepatitis could slow the progression of ALS, also known as Lou Gehrig's disease, according to new research by University of Alberta scientists.

Communication between neural networks

December 18, 2018
The brain is organized into a super-network of specialized networks of nerve cells. For such a brain architecture to function, these specialized networks – each located in a different brain area – need to be able to communicate ...

Tiny implantable device short-circuits hunger pangs, aids weight loss

December 17, 2018
More than 700 million adults and children worldwide are obese, according to a 2017 study that called the growing number and weight-related health problems a "rising pandemic."

Discovery of a novel way synapses can regulate neuronal circuits

December 17, 2018
The fundamental process of information transfer from neuron to neuron occurs through a relay of electrical and chemical signaling at the synapse, the junction between neurons. Electrical signals, called action potentials, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.