A new neuro-inspired system for pattern detection

Credit: CC0 Public Domain

A scientific team comprising researchers from the Center for Biomedical Technology (CTB) at UPM, University of La Laguna (ULL) and Institute for Cross-Disciplinary Physics and Complex System (IFISC, CSIC-UIB) has developed a new method to detect temporal patterns which is based on a neuro-inspired system and is used to classify brain activity using magnetoencephalography. This methodology, which has been validated and applied to real data, could shed light on some mechanisms of information storage in the brain.

Humans perform many cognitive tasks remarkably well, including pattern recognition, although the neuronal mechanisms underlying this process are not well known. However, inspired by brain circuits have been designed and used to tackle spatio-temporal tasks.

The research work carried out by researchers from the Laboratory of Cognitive and Computational Neuroscience (LNCyC) at CTB, in collaboration with other institutions, is a pattern detection structure able to assess the parallel temporal sequences and, thanks to the mechanism of synaptic plasticity added to the model, it can also learn the distinctive features of different type of signal of interest.

The neuro-inspired structure is the multi-neuronal spike sequence detector (MNSD). The detector can be trained online using new examples. After learning from a certain number of examples, MNSD can learn temporal sequences belonging to a specific group and distinguish learned sequences from others.

More information: Gianluca Susi et al. A Neuro-Inspired System for Online Learning and Recognition of Parallel Spike Trains, Based on Spike Latency, and Heterosynaptic STDP, Frontiers in Neuroscience (2018). DOI: 10.3389/fnins.2018.00780

Journal information: Frontiers in Neuroscience
Citation: A new neuro-inspired system for pattern detection (2019, February 21) retrieved 21 May 2024 from https://medicalxpress.com/news/2019-02-neuro-inspired-pattern.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Why artificial intelligence is likely to take more lives


Feedback to editors