Profiling immune system in pediatric arthritis patients offers hope for improved diagnosis and treatment

arthritis
Credit: CC0 Public Domain

A team of scientists from VIB and KU Leuven has developed a machine learning algorithm that identifies children with juvenile arthritis with almost 90% accuracy from a simple blood test. The new findings, published this week in Annals of the Rheumatic Diseases, pave the way for the use of machine learning to improve diagnosis and to predict which juvenile arthritis patients may respond best to different treatment options. The work was led by Professor Adrian Liston, from VIB and KU Leuven in Leuven, Belgium and the Babraham Institute in Cambridge, UK.

Juvenile idiopathic arthritis is the most common rheumatic disease in children, but it presents in many different forms, severities and outcomes. This diversity makes patient classification difficult, especially in the early stage of the disease.

A team of researchers at Belgian research organisations VIB, KU Leuven and UZ Leuven undertook a detailed biological characterisation of the immune system of hundreds of children with and without juvenile arthritis to help the diagnosis or treatment decisions for this disease.

"Essentially, we took from more than 100 children, two thirds of whom had childhood arthritis," explains Erika Van Nieuwenhove (VIB-KU Leuven), and first author of the study. "We analysed their immune system at a greater level of detail than was ever done before for this disease, and simply using this data we then used machine learning to see if we could tell which children had arthritis."

The results were quite remarkable: the algorithm was about 90% accurate at identifying the children with the disease. "Using only information on the , and no at all, we could design a machine learning algorithm that was about 90% accurate at spotting which kids had ," says Professor Adrian Liston (VIB—KU Leuven, Belgium and Babraham Institute, Cambridge, UK). "This result is a proof-of-principle demonstration that immune phenotyping combined with machine learning holds huge potential to diagnose different forms of early in the disease course. Similar approaches could be applied to improve patient selection for treatments and clinical trials."

The researchers are hopeful about the impact of this research in improving patient outcomes. "The tool needs further validation but otherwise there are no scientific barriers to this approach being quickly translated to the clinic," comments Professor Carine Wouters (UZ Leuven), who was the clinical lead for this study. "Down the line, we could use this kind of detailed classification information—and machine learning analysis—to identify which patients will respond best to specific treatment options."


Explore further

Identical twins light the way for new genetic cause of arthritis

More information: Machine learning identifies the immunological signature of Juvenile Idiopathic Arthritis, Van Nieuwenhove et al., Annals of the Rheumatic Diseases
Journal information: Annals of the Rheumatic Diseases

Citation: Profiling immune system in pediatric arthritis patients offers hope for improved diagnosis and treatment (2019, March 13) retrieved 24 June 2019 from https://medicalxpress.com/news/2019-03-profiling-immune-pediatric-arthritis-patients.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
7 shares

Feedback to editors

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more