Polysulfide donors strongly suppress inflammatory responses

Polysulfide donors strongly suppress inflammatory responses
When lipopolysaccharide derived from E. coli was administered intraperitoneally in mice, the survival rate decreased to 20% after 96 hours in the untreated group. Treatment with a polysulfide donor 30 minutes after administration of lipopolysaccharide improved the survival rate to 90%. In the treatment group, they also found that the amount of cytokines, an indicator for inflammation, was greatly reduced. Credit: Prof. Tomohiro Sawa

Researchers from Japan have developed a new polysulfide donor: a chemical compound composed of chains of sulfur atoms that can artificially increase reactive sulfur species (chemically reactive molecules containing sulfur) in cells and tissues. This donor is believed to be an excellent candidate for a new anti-inflammatory therapy because it has an extremely high anti-inflammatory effect.

In the cells of many organisms, metabolites called reactive species (RSS) are made from the amino acid cysteine. Recent studies have revealed that RSS protect cells from and, under certain conditions, have the important function of maintaining mitochondrial respiration. Polysulfide donors are expected to be an important tool in investigating the function of RSS, and are being developed all over the world. However, their therapeutic effects remain to be discovered.

A collaboration between researchers at Kumamoto University (Kumamoto, Japan) and Tohoku University (Sendai, Japan) has succeeded in synthesizing a new polysulfide by linking multiple sulfur atoms to acetylcysteine, an artificial amino acid. Their experiments revealed that the new donor was able to quickly penetrate into cells and greatly increase the RSS content by transferring extra sulfur atoms to intracellular cysteine and gluthathione.

When were treated with the donor, macrophage response to stimulation by various inflammation-inducing substances (e.g., lipopolysaccharides derived from gram-negative bacteria) was greatly inhibited. In other words, the researchers found that their new polysulfide donor was very good at reducing inflammation. To confirm its anti-inflammation properties, the polysulfide donor was administered to mice suffering from endotoxin shock—a condition that often leads to death due to excessive inflammation. Compared to non-treated mice, the survival rate significantly improved.

"This is a landmark achievement that shows, for the first time, that RSS are closely involved with immune function regulation, and that inflammatory pathology can be improved by artificially increasing RSS," said study leader, Professor Tomohiro Sawa of Kumamoto University. "Furthermore, excessive inflammatory reactions are involved in endotoxin shock, allergies, and autoimmune diseases. Steroid hormones and immunosuppressants are the typical treatments for these disorders, but they come with various side effects. In the future, we expect to target intracellular active sulfur regulation to develop new anti-inflammatory therapies."

Explore further

Inflammation: Study explains loss of protective abilities of T cells

More information: Tianli Zhang et al, Enhanced Cellular Polysulfides Negatively Regulate TLR4 Signaling and Mitigate Lethal Endotoxin Shock, Cell Chemical Biology (2019). DOI: 10.1016/j.chembiol.2019.02.003
Journal information: Cell Chemical Biology

Citation: Polysulfide donors strongly suppress inflammatory responses (2019, April 5) retrieved 17 August 2022 from https://medicalxpress.com/news/2019-04-polysulfide-donors-strongly-suppress-inflammatory.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Feedback to editors