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The neuroimaging community has made significant strides toward
collecting large-scale neuroimaging datasets, which, until the past
decade, had seemed out of reach. Between initiatives focused on the
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aggregation and open sharing of previously collected datasets and de
novo data generation initiatives tasked with the creation of community
resources, tens of thousands of datasets are now available online. These
span a range of developmental statuses and disorders, and many more
will soon be available.

Such open data sources are allowing researchers to increase the scale of
their studies, to apply various learning strategies (for example, artificial
intelligence) with ambitions of brain-based biomarker discovery, and to
address questions regarding the reproducibility of findings, all at a pace
that is unprecedented in imaging. However, based on the findings of
recent works, few of the datasets generated to date contain enough data
per subject to achieve highly reliable measures of brain connectivity. A
new examination of this critical deficiency focuses on the field of
neuroimaging, but the implications of its argument and the statistical
principles discussed are broadly applicable.

Scoping the problem

The concern is simple: Researchers are amassing large-scale datasets
through data sharing and coordinated data generation initiatives, but
failing to optimize their data collections for relevant reliabilities (for
example, test-retest, between raters, etc.). They may be collecting larger
amounts of suboptimal data rather than smaller amounts of higher-
quality data, a trade-off that does not bode well for the field, particularly
when it comes to making inferences and predictions at the individual
level. The new paper asserts that this misstep can be avoided by making
upfront critical assessments of reliability.

The trade-off occurring in neuroimaging reflects a general tendency in
neuroscience. Statistical power is fundamental to studies of individual
differences, as it determines the ability to detect effects of interest.
While sample size is readily recognized as a key determinant of
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statistical power, measurement reliabilities are less commonly
considered, and at best are only indirectly considered when estimating
required sample sizes. This is unfortunate, as statistical theory dictates
that reliability places an upper limit on the maximum detectible effect
size.

The interplay between reliability, sample size and effect size in
determinations of statistical power is commonly underappreciated in the
field. To facilitate a more direct discussion of these factors, Fig. 1
depicts the impact of measurement reliability and effect size on the
sample sizes required to achieve desirable levels of statistical power (for
example, 80 percent); these relations are not heavily dependent on the
specific form of statistical inference employed (for example, two-sample
t-test, paired t-tests, three-level ANOVA). Estimates were generated
using the pwr package in R and are highly congruent with results from
Monte Carlo simulations5. With respect to neuroscience, where the bulk
of findings report effect sizes ranging from modest to moderate6, the
figure makes obvious the point that increasing reliability can
dramatically reduce the sample size requirements (and therefore cost)
for achieving statistically appropriate designs.

In neuroimaging, the reliability of the measures employed in
experiments can vary substantially. In MRI, morphological measures are
known to have the highest reliability, with the most voxels in the brain
exhibiting reliabilities measured as intraclass correlation >0.8 for core
measures (for example, volume, cortical thickness and surface area). For
functional MRI (fMRI) approaches, reliability tends to be lower and
more variable, heavily dependent on the experimental design, the nature
of the measure employed and—most importantly—the amount of data
obtained (for example, for basic resting-state fMRI measures, the mean
intra-class correlation obtained across voxels may increase by two to
four times as one increases from five minutes to 30 minutes of data).
Limited interindividual variability may be a significant contributor to
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findings of low reliability for fMRI, as its magnitude relative to within-
subject variation is a primary determinant of reliability. Such a concern
has been raised for task fMRI, which directly borrows behavioural task
designs from the psychological literature.

Potential implications

From a statistical perspective, the risks of underpowered samples
yielding increased false negatives and artificially inflated effect sizes
(i.e., the 'winner's curse' bias) are well known. More recently, the
potential for insufficiently powered samples to generate false positives
has been established, as well. All these phenomena reduce the
reproducibility of findings across studies, a challenge that other fields
(for example, genetics) have long worked to overcome. In the context of
neuroimaging or human brain mapping, an additional concern is that
researchers may be biased to overvalue those brain areas for which
measurement reliability is greater. For example, the default and
frontoparietal networks receive more attention in clinical and cognitive
neuroscience studies of individual and group differences. This could be
appropriate, but it could also reflect the higher reliabilities of these
networks.

Solutions

The goal is to draw greater attention to the need for assessment and
optimization of reliability, which is typically underappreciated in
neuroscience research. Whether focusing on imaging, electrophysiology,
neuroinflammatory markers, microbiomics, cognitive neuroscience
paradigms or on-person devices, it is essential that scientists consider
measurement reliability and its determinants.

For MRI-based neuroimaging, a repeated theme across the various
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modalities (for example, diffusion, functional, morphometry) is that
higher quality data require more time to collect, whether due to
increased resolution or repetitions. As such, investigators would benefit
from assessing the minimum data requirements to achieve adequately
reliable measurements before moving forward. An increasing number of
resources are available for such assessments of reliability (for example,
Consortium for Reliability and Reproducibility, MyConnectome Project,
Healthy Brain Network Serial Scanning Initiative, Midnight Scan Club,
Yale Test-Retest Dataset, PRIMatE Data Exchange). It is important to
note that these resources are primarily focused on test-retest reliability,
leaving other forms of reliability less explored (for example, interstate
reliability, inter-scanner reliability; see recent efforts from a Research
Topic on reliability and reproducibility in functional connectomics).

Importantly, reliability will differ depending on how a given imaging
dataset is processed and which brain features are selected. A myriad of
processing strategies and brain features have emerged, but they are
rarely compared with one another to identify those most suitable for
studying individual differences. In this regard, efforts to optimize
analytic strategies for reliability are essential, as they make it possible to
decrease the minimum data required per individual to achieve a target
level of reliability. This is critically important for applications in
developing, aging and clinical populations, where scanner environment
tolerability limits the ability to collect time-intensive datasets. An
excellent example of quantifying and optimizing for reliability comes
from functional connectomics. Following convergent reports that at least
20-30 min of data are needed to obtain test- retest reliability for
traditional pairwise measures of connectivity, recent works have
suggested the feasibility of combining different fMRI scans in a session
(for example, rest, movie, task) to make up the differential in calculating
reliable measures of functional connectivity.

Cognitive and clinical neuroscientists should be aware that many
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cognitive paradigms used inside and outside of the scanner have never
been subject to proper assessments of reliability, and the quality of
reliability assessments for questionnaires (even proprietary) can vary
substantially.

As such, the reliability of data being used on the phenotyping side is
often an unknown in the equation and can limit the utility of even the
most optimal imaging measures, a reality that also affects other fields
(for example, genetics) and inherently compromises such efforts.
Although not always appealing, an increased focus on the quantification
and publication of minimum data requirements and their reliabilities for
phenotypic assessments is a necessity, as is exploration of novel
approaches to data capture that may increase reliability (for example,
sensor-based acquisition via wearables and longitudinal sampling via
smartphone apps).

Finally, and perhaps most critically, there is marked diversity in how the
word 'reliability' is used, and a growing number of separate reliability
metrics are appearing. This phenomenon is acknowledged in a recent
publication by an Organization for Human Brain Mapping workgroup
tasked with generating standards for improving reproducibility. The
researchers suggest it would be best to build directly on the terminology
and measures well-established in other literatures (for example, statistics,
medicine) rather than start anew. They particularly want to avoid
confusions in terminology, particularly those between 'reliability' and
'validity," two related but distinct concepts that are commonly used
interchangeably in the literature.

A confusion to avoid

It is crucial that researchers acknowledge the gap between reliability and
validity, as a highly reliable measure can be driven by artifact rather than
meaningful (i.e., valid) signal. As illustrated in Fig. 2, this point becomes
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obvious when one considers the differing sources of variance associated
with the measurement of individual differences. First, there is the
portion of the variance measured across individuals that is the trait of
interest (Vt) (for example, between-subject differences in grey matter
volume within left inferior frontal gyrus). Second, there is variance
related to unwanted contaminants in the measurement that can
systematically vary across individuals (Vc) (for example, between-
subject differences in head motion). Finally, there is random noise (Vr),
which is commonly treated as within-subject variation. Reliability is the
proportion of the total variance that can be attributed to systematic
variance across individuals (including both Vt and Vc; see equation 1); in
contrast, validity is the proportion of the total variance that can be
attributed specifically to the trait of interest alone (Vt; see equation 2).

Reliability= (Vt+Vc)/(Vt+Vc +Vr ) (1)
Validity =Vt/(Vt+Vc +Vr ) (2)

As discussed in prior work, this framework indicates that a measure
cannot be more valid than reliable (i.e., reliability provides an upper
bound for validity). So, while it is possible to have a measurement that is
sufficiently reliable and completely invalid (for example, a reliable
artifact), it is impossible to have a measurement with low reliability that
has high validity.

A specific challenge for neuroscientists is that while reliability can be
readily quantified, validity cannot, as it is not possible to directly
measure Vt. As such, various indirect forms of validity are used, which
differ in the strength of the evidence required. At one end is criterion
validity, which compares the measure of interest to an independent
measure designated as the criterion or 'gold standard' measurement (for
example, comparison of individual differences in tracts identified by
diffusion imaging to postmortem histological findings, or comparison of
differences in fMRI-based connectivity patterns to intracranial measures
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of neural coupling or magnetoencephalography).

At the other extreme is face validity, in which findings are simply
consistent with 'common sense' expectations (for example, does my
functional connectivity pattern look like the motor system?).
Intermediate to these are concepts such as construct validity, which test
whether a measure varies as would be expected if it is indexing the
desired construct (i.e., convergent validity) and not others (i.e., divergent
validity) (for example, do differences in connectivity among individuals
vary with developmental status and not head motion or other systematic
artifacts?).

An increasingly common tool in the imaging community is predictive
validity, where researchers test the ability to make predictions regarding
a construct of interest (for example, do differences in the network
postulated to support intelligence predict differences in IQ?). As can be
seen from the examples provided, different experimental paradigms
offer differing levels of validity, with the more complex and challenging
offering the highest forms. From a practical perspective, what
researchers can do is make best efforts to measure and remove artifact
signals such as head motion and work to establish the highest form of
validity possible using the methods available.

As neuroscientists make strides in their efforts to deliver clinically useful
tools, it is essential that assessments and optimizations for reliability
become common practice. This will require improved research practices
among investigators, as well as support from funding agencies in the
generation of open community resources upon which these essential
properties can be quantified.

  More information: Xi-Nian Zuo et al, Harnessing reliability for
neuroscience research, Nature Human Behaviour (2019). DOI:
10.1038/s41562-019-0655-x 
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The code is available on GitHub at github.com/TingsterX/power__re …
iability_sample_size
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