
 

Computing hubs in the hippocampus and
cortex
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Recording paradigm. Schematic representation of the (A) simultaneous
mEC/HPC recording setup and (B) simultaneous mPFC/HPC during anesthesia
and natural sleep. The Nissl stained sections display the anatomical regions
recorded by the different silicon probes used (yellow boxes). Arrows represent
the anatomical connectivity (●: source layer, : target layer) between the dorsal
hippocampus CA1 region (SOr: stratum oriens; SP: stratum pyramidale; SR:
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stratum radiatum; SLM: stratum lacunosum moleculare) with the dorso-medial
entorhinal cortex (mEC, layers I to VI) and medial prefrontal cortex (mPFC,
layers I to VI). (C) Number of recorded single units (color coded on the right
scalebar) per anatomical layer (rows), for each of the 30 recordings (columns).
(D) Number of recordings (color coded on the right scalebar) simultaneously
targeting pairs of two different anatomical layers. Credit: Science Advances, doi:
10.1126/sciadv.aax4843

Neural computation occurs in large neural networks within dynamic
brain states, yet it remains poorly understood if the functions are
performed by a specific subset of neurons or if they occurred in specific,
dynamic regions. In a recent study, Wesley Clawson and co-workers at
the Institute of Neuroscience Systems in France, used high density
recordings in the hippocampus, medial entorhinal and medial prefrontal
cortex of the rat. Using the animal model, they identified computing
substates where specific computing hub neurons performed well-defined
operations on storage and sharing in a brain state-dependent manner.

The scientists retrieved distinct computing substates in each global brain
state, which included REM (rapid-eye-movement) and NREM (non-
rapid-eye-movement) sleep. The results suggested that the functional
roles were not hardwired but reassigned at a specified time-scale.
Clawson et al. identified the sequence of substates whose temporal
organization was dynamic between order and disorder. The results of the
study are now published on Science Advances.

Information processing in the brain can be approached on three levels to
include (1) biophysical, (2) algorithmic and (3) behavioral components.
The algorithmic level remains the least understood, where it describes 
emergent functional computations that can be decomposed into simpler
processing steps with complex architectures. At the lowest level of
individual system components such as single neurons, the building blocks
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of distributed information processing can be modeled as primitive
operations of storing, transferring or nonlinearly integrating information
streams. During resting state conditions both blood-oxygen level
dependent (BOLD) and electroencephalogram (EEG) signals are
characterized by discrete periods of functional connectivity or
topographical stability known as resting state networks and microstates.
Neuroscientists have demonstrated that transition between the large-scale
epochs are not periodic or random but occur through a fractal and
complex syntax, hitherto not understood.

For instance, does the macroscale organization also occur at the
microscale? Is neuronal activity at the level of the microcircuit
associated with different styles of information processing? To answer
these questions, the first goal of Clawson and co-workers was to
determine if information processing at the local neuronal circuit level
was structured into discrete sequences of substates to form a hallmark of
computation. For this, they focused on the low-level computing
operation at the level of the single-neuron such as basic information
storage and sharing. They studied two conditions – anesthesia and natural
sleep that were characterize by theta (THE)/ slow oscillation (SO) and
rapid eye movement (REM)/nonREM sleep, respectively.
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Unsupervised extraction of states and hubs. (A) Cartoon representing the
approximate recording locations (mEC and CA1; mPFC and CA1) during two
experiment types in anesthesia and sleep. (B) Example LFP trace taken from the
32 channels in CA1 (blue) and 32 channels in mEC (orange). Below are
examples of isolated unit activity taken from the same recording. For each time
window (t), we extract different features represented by the Feature Vector(t),
which has a feature value for each channel or single unit recorded. Four features
were considered: spectral band averaged powers (from LFP channels), single unit
firing rates, information storage, and information sharing. (D) Left: Cartoon
representation of Msim. To extract substates and their temporal dynamics, the
scientists constructed a feature similarity matrix Msim in which the entry
Msim(ta, tb) measured Pearson correlation between the vectors
FeatureVector(ta) and FeatureVector(tb). Time flows from the top-left corner
horizontally to the top-right corner and vertically to the bottom-left corner. A
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block (square) along the diagonal in the resulting image identifies a period of
feature stability, i.e., a sub-state. A block appearing several times horizontally or
vertically indicates that a feature is repeated several times. Middle: Unsupervised
clustering identifies the different sub-states (indicated by a number) and their
temporal dynamics (the vertical axis corresponds to that of the similarity matrix).
Right: they identified computing hub cells, i.e., neurons that display
exceptionally high values for a given feature, associated with given sub-states.
Note that reoccurring states have the same hub cells (state 3 in this example).
The (*) corresponds to the neurons that are behaving in the top 5% of the
examined feature. Credit: Science Advances, doi: 10.1126/sciadv.aax4843.

During the work, Clawson considered the CA1 region of the
hippocampus (HPC), the medial entorhinal cortex (mEC) and medial
prefrontal cortex (mPFC) to investigate the algorithmic properties
shared between the regions. Their second study goal, aimed to determine
if primitive processing operations were localized, or distributed in the
microcircuit as previously proposed. This concept raised two key
questions:

(1) are specific operations driven by a few key neurons in a rich-club
architecture?

(2) Do neurons have predetermined computing roles as information
"sharer," "storer" or rigidly described partners in their functional
interactions? More specifically, is information routed through a
hardwired neuronal "switchboard" system?

In total, the findings suggest a more distributed and less hierarchical
style of information processing in neuronal microcircuits similar to 
emergent liquid state computation than pre-programmed processing
pipelines.
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Clawson et al. recorded neurons simultaneously from the CA1 region of
the HPC (hippocampus) and mEC (medial entorhinal cortex) under
anesthesia and from the mPFC (medial prefrontal cortex) region during
natural sleep. They focused on two factors –

(1) How much information could a neuron buffer in time? They
measured the parameter as active information storage, and

(2) Information sharing – how much of a neuron's activity information
was available to other neurons? This was measured as mutual
information.

  
 

  

LEFT: Firing substates. Examples of similarity matrices Msim obtained from
Firing(t) at different times in mEC during anesthesia (A) and in mPFC during
natural sleep (D), measured in two animals. The bar below Msim indicates the
transitions occurring between THE/REM (dark blue) and SO/nonREM (light
blue). Although there were only two global brain states, six (A) and five (D)
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firing substates were identified. (B and E) Examples of the firing density of
three neurons (a, b, and c) recorded in mEC and mPFC, respectively, with
amplitude normalized for visualization. Neurons tended to fire in specific
substates, indicated here with a color code. These examples also illustrate the
switching between different firing substates inside a given global oscillatory state
and their overlap across different global oscillatory states. The analysis of all
recordings revealed that a majority of firing substates tended to occur during a
preferred global oscillatory state, as indicated by the bimodal histograms during
anesthesia (C) and natural sleep (F), respectively. RIGHT: Information storage
substates. Examples of similarity matrices Msim obtained from Storage(t) at
different times in mEC during anesthesia (A) and CA1 during natural sleep (D).
As for firing substates, we identified more storage substates (six and seven,
respectively, in the shown examples) than global oscillatory states. The scientists
show in (B) and (E) that the participation of three individual neurons to
information storage (indicated in arbitrary units for visualization) was substate
dependent. The values reported above the plots correspond to the average firing
rate of neuron b (green color) during the corresponding epochs within consistent
storage substates. The analysis of all recordings showed that storage substates
tended to occur during a preferred global oscillatory substate, as indicated by the
bimodal histograms for anesthesia (C) and for natural sleep (F). Credit: Science
Advances, doi: 10.1126/sciadv.aax4843.

The neuroscientists identified brain global states by the clustering
analysis of field recordings performed in the CA1 region. Using
unsupervised clustering they identified two states of anesthesia
corresponding to the periods dominated by slow oscillations (SO state)
and theta (THE state) oscillations, as well as two states corresponding to
REM vs. nonREM episodes.

During proof-of-principle experiments in the animal models, the
scientists assessed brain state-dependent firing substates and revealed a
total of six firing substates in mEC and five in mPFC during THE
oscillations and REM episodes. The scientists showed that the neuronal
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activity was compartmentalized with discrete switching events from one
substate to another. The firing substates were brain state and region
specific, without strict entrainment by the global oscillatory state. At any
given time, Clawson et al. observed neuronal activity to convey an
amount of information, measured by Shannon entropy.

  
 

  

Information sharing substates. The cartoon in (A) shows an example of sharing
assembly for a given sharing hub neuron across three nonsequential occurrences
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of the same substate. The total strength of in- and out-going sharing is equal
(large, external arrows) during ta, tb,, and tc while the assembly changes
(smaller, internal arrows). The changing size of internal arrows represents the
sharing strength of that particular functional connection between the sharing hub
and its source and target neurons. (B) Similarity matrices Msim for sharing
strengths Sharing_S(t) (top) and sharing assemblies Sharing_A(t) (bottom) in
mEC during anesthesia (left) and mPFC during natural sleep (right). The
scientists identified a multiplicity of substates within each global oscillatory state
as shown by the colored bars below the feature similarity matrices. The
similarity matrices for sharing strengths and assemblies have a matching block
structure. However, sharing strengths were very stable within a substate (red-
hued blocks), while sharing assemblies were highly volatile (light blue–hued
blocks). (C) This is quantified for each sharing assembly substate by a liquidity
coefficient. For all observed sharing substates across all regions and global
oscillatory states in all animals, the liquidity of sharing assemblies was much
larger than the one of sharing strengths. (D) Most sharing substates occurred
preferentially during a preferred global oscillatory state for both anesthesia and
natural sleep combined. Credit: Science Advances, doi: 10.1126/sciadv.aax4843.

Similar to the firing substates, the information storage substates did not
show strict alignment between the studied regions. During anesthesia, the
scientists observed the absolute storage values to be stronger in mEC
than the CA1 regions. However, during natural sleep, the storage values
for CA1 were two orders of magnitude larger than during anesthesia.
The results showed that information storage was dynamically distributed
in discrete substates to be brain state and brain region dependent. As a
result, storage capacity of a neuron could vary substantially across time.

Following up from the single-cell level analysis conducted so far, the
scientists next determined which neurons sharing cells could exchange
information. Although the sum of incoming and outgoing information
remained constant in each sharing substate, the information was shared
across different cell assemblies from one time period to the next. All
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three brain regions showed remarkable liquid-like sharing assemblies
across brain states with specificity to the brain regions.

Since functional, effective and anatomical hub neurons were previously
identified in the brain, Clawson et al. complemented the concept by
introducing storing and sharing hubs where neurons displayed elevated
storage or sharing values respectively. The scientists observed a general
tendency for inhibitory interneurons to serve as computing hubs than for
excitory cells. The tendency was stronger for cortical regions during
anesthesia and during sleep. In total, the scientists observed only 12
percent of the neurons to function as "multifunction hubs" for both
storage and sharing functions.

  
 

  

A democracy of computing hubs. (A) Within every computing substate, some
neurons exhibited significantly strong values of information storage or sharing
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(computing hubs). However, these computing hubs did generally change from
one substate to the other, as shown in this example. Different rows correspond to
different single units recorded in mEC during anesthesia and different columns
correspond to different computing substates (left, storage substates 1 to 6; right,
sharing substates 1 to 4). An entry is colored in yellow when the neuron is a
computing hub within the corresponding substate. In the example shown, while
~9% of neurons on average were simultaneously acting as computing hub, more
than 40% of the recorded units were recruited as hubs for at least one substate
when considering all the computing substates together (vertical bar on the right).
(B and C) The probability that a neuron acted as hub depended only loosely on
its anatomical localization. Panel (B) shows that for all regions and layers, the
probability that a neuron acts as computing hub at least once was always larger
than 30%. Inhibitory (i) neurons tended to be recruited as hubs more frequently
than excitatory (e) neurons. Analogously, panel (C) shows that none of the layers
display a specialization in either one of the two processing operations of
information storage or sharing. Asterisks denote statistically significant
comparisons (lack of overlap between 95% confidence intervals for the
probability, reported as vertical ranges on top of the histogram bar). In (C), a
yellow horizontal line indicates the fraction of computing hub cells, which also
happen to be simultaneously high firing rate cells. Many computing hubs thus
have an average or low firing rate. In (B) and (C), in CA1, light blue represents
anesthesia and dark blue represents natural sleep. Credit: Science Advances, doi:
10.1126/sciadv.aax4843.

The findings showed the existence of substate sequences in three
different brain regions: the HPC, the mEC and the mPFC; during
anesthesia and natural sleep. Since the analysis was limited to a few brain
states, the scientists assume they may have underestimated the
proportion of GABA neurons acting as computational hubs in the study.
The observed capacity to generate complex sequences of patterns in the
study is a hallmark of self-organizing systems, associated with their
emergent potential to perform universal computation. Such dynamics at
the "edge of chaos" (transition between order and disorder) allow
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advantages for information processing. The observed capacity to
generate complex sequences of patterns is a hall-mark of self-organizing
systems and is associated with their emergent potential to perform
universal computations. Understanding such patterns and dynamics
within brain states will benefit early interpretation of neurological
disorders.

In this way, Wesley Clawson and co-workers revealed a rich algorithmic-
level organization of brain computation during natural sleep and
anesthesia. The work indicates the existence of a basic architecture for
low level computations shared by diverse neuronal circuits. Although the
work did not prove functional relevance of substate dynamics, it can
serve as a platform for previously undisclosed neural computations. The
neuroscientists aim to perform similar analysis during behavioral tasks
next with the addition of goal-driven maze navigation.
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