

Making masks at home – what you need to know about how to reduce the transmission of coronavirus

April 16 2020, by Susan L. Sokolowski and Karen L. Labat

SARS-CoV-2 virus in comparison to other known particles (not to scale). Credit: Susan Sokolowski, CC BY

The recent Centers for Disease Control and Prevention recommendation to use <u>cloth face coverings</u> to help slow the spread of COVID-19 has generated numerous how-to articles and videos. As academics who focus on personal protective equipment (PPE) research and development, we are concerned about the lack of information about two critical features of home mask design: fit and fabric selection.

The reality of particle size

Virus particles are tiny, ranging from 0.1 to 0.3 micron. A size 40 micron particle is visible with the <u>naked eye</u>—anything smaller, you need specialized equipment to see it.

Protective masks like the N95 are designed to prevent <u>virus particles</u> from flowing in and out of the mask. Due to <u>current shortages</u>, N95 masks should be reserved for COVID-19 health care workers only.

Better than nothing

Homemade masks cannot block or filter the SARS-CoV-2 virus, because it can easily flow through every common material people have at home. However, a homemade mask is still better than none at all. If made correctly, a homemade mask can reduce the transmission of the virus from the wearer to others by impeding large droplets and spray produced by a cough or sneeze. It can also reduce the transmission of the virus from others to the wearer.

Fit

Masks should completely cover the nose and mouth. When measuring for a mask pattern, make sure it extends from the top of the nose—as close as possible to the eyes without obstructing sight—to under the chin. Masks should cover the face side-to-side, well past the opening of the mouth.

A properly fitting mask. Credit: Arlys Dayton, CC BY

When developing prototypes, check around all edges of the mask for gaps. If you see any, close them up by pinching the <u>fabric</u> together, and stitch or tape or staple edges together to create a pleat or dart. A thin metal wire or paper clip placed along the top edge of the mask can stabilize and shape it along the bridge of the nose and cheekbone for a closer fit.

Masks should stay securely in position and fit comfortably with ties or elastic ear loops. If the mask is too tight or loose, the wearer may continuously adjust the mask forgetting the admonition—"Don't touch your face!"

The ties and loops should also be the <u>mechanism for taking off the mask</u>, as the front of the mask might be contaminated.

Variables that make up a fabric. Credit: Susan L. Sokolowski and Karen L. LaBat, CC BY

Fabric selection

People have varying access to different fabrics at home. Masks should incorporate fabrics that:

- Reduce virus transmission to and from the nose and mouth
- Wrap around the face and are comfortable next to the skin
- Are easy to wash and sanitize.

Fabric is comprised of four variables that must be considered for mask making: fiber, yarn, structure and finish. Change a variable—and mask performance changes.

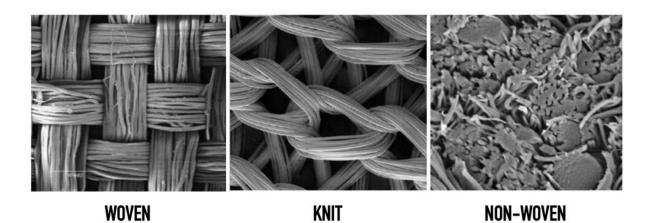
Fibers are the smallest component of a fabric. They cannot be identified by sight or touch. Look for a fiber content label on the products or fabrics you might use for your mask. Alternately, a "<u>burn test</u>" can be used as a crude method to determine if a fabric is a natural fiber, humanmade fiber, or a blend of natural and man made fibers. If you choose this method be careful.

There are three important fiber characteristics to consider for mask making. The first is micron size—the diameter of a fiber. The SARS-CoV-2 virus particle is 0.1 to 0.3 micron, so small-sized fibers allow for more compact fabric structures to reduce transmission. The second is how the fiber feels next to skin—this will indicate how comfortable a mask may feel next to your face. The third is moisture regain—how well the fiber absorbs moisture. A higher number means more absorbency; low regain gives a sense of how well the fiber might repel moisture.

FIBER NAME &	MICRON	NEXT TO SKIN	MOISTURE	MASK
PRODUCT TYPES	SIZE	FEEL	REGAIN	CONSIDERATIONS
Cotton	11-22µ	Soft, limited allergic	7-11%	Absorbent, easy wash & dry at high
(T-shirts, denim		reactions		temps, not damaged by detergents or
jeans, bedding,				bleach
bandanas) Flax/linen	10.1/	Calanda	1.00/	
	12-16µ	Can be scratchy,	12%	Softens over time, wrinkles, absorbent,
(dresses, shirts,		limited allergic reactions/irritations		may shrink when washing & drying at high temps, not damaged by
suiting)		reactions/imtations		detergents, bleach weakens
Wool	11.5-14µ	Can be scratchy,	13-18%	Absorbent, insulating, not damaged by
(sportswear,	11.5-14µ	possible allergic	13-1070	detergents, bleach damages, may "felt"
dresses, suits, coats)		reactions/irritations		with high temp washing/drying
Silk	10-13µ	Smooth, soft, no	11%	Absorbent, use mild soap, bleach
(shirts, dresses,		allergic reactions		damages, cannot wash/dry at high
suits, ties)				temps
Rayon	Varies	Smooth or textured,	11.5-	Absorbent, use mild soap, bleach
(dresses, shirts,		limited allergic	12.5%	damages, cannot wash/dry at high
pants)		reactions		temps, may shrink
Polyester	Varies	Smooth or textured,	0.4%	Non-absorbent, dries quickly, high
(sportswear,		limited allergic		strength, not damaged by detergents,
dresses, pants,		reactions		bleach weakens, retains odor
shirts, jackets)			1	
Nylon	Varies	Smooth or textured,	2.8-5%	Low moisture absorption, high strength,
(sportswear,		limited allergic		not damaged by detergents, bleach
underwear, bags)		reactions		weakens
Polypropylene/	Varies	Smooth or textured,	Less than	Does not absorb moisture or odor, dries
olefin		limited allergic	0.1%	quickly, wicks moisture, oily stains
(sportswear and,		reactions		difficult to remove, not damaged by
medical apparel)	Varies	Smooth, limited	.75-1.3%	detergents, bleach weakens
Spandex (sportswear apparel,	varies	allergic reactions	./5-1.3%	Low moisture absorption, stretchy, resists body/make-up oils, not damaged
underwear, pants,				by detergents, bleach weakens
shirts)				by detergents, bleach weakens
sinitaj				

Generic fiber characteristics and mask considerations. Credit: Susan L. Sokolowski and Karen L. LaBat, <u>CC BY</u>

Fibers are twisted together to form yarns. Yarns vary in size affecting fabric thickness and breathability. "Yarn count" is the number of yarns in a 1-inch square of woven fabric. A high yarn count fabric indicates a dense fabric with droplet blocking potential. Yarns with different properties can be blended to combine characteristics.



Yarns are then structured into the physical fabric.

Performance finishes, like water repellency and antimicrobials, are not visible but could be helpful. Detect water repellency or moisture wicking by using an eye dropper to place a drop of water on a fabric to see how it moves across the fabric. Aesthetic finishes like graphics and batik are not so useful.

Put it all together

There are many fabric variables to reckon with for a homemade mask. Consider building a three-layer system.

Types of fabric. Credit: Susan L. Sokolowski and Karen L. LaBat, CC BY

STRUCTURE & Product types	CONSIDERATIONS RELATED TO Mask design
Woven (denim jeans, shirting, bedding)	Woven fabrics are fairly stable - so the mask will not stretch. Openings between the yarns can allow droplets/vapor to transmit through the fabric, so select a fabric with small openings and/or high yarn count to limit transmission.
Knit (sportswear, underwear)	Knits are stretchy which can aid with mask comfort and fit, but the structure can distort when stretched across the face, creating open spaces allowing transmission.
Non-woven (coffee, furnace & vacuum bag filters)	The random non-woven structure may provide a blocking advantage, depending on how densely the yarns/fibers are packed. If the yarns/fibers are too compacted, they may impede breathing (e.g. plastic films). Nonwovens do not stretch in any direction - the fabric could rip if under too much tension. Avoid nonwovens of fiberglass.

Structures and mask considerations. Credit: Susan L. Sokolowski and Karen L. LaBat, <u>CC BY</u>

VARIABLE	NEXT TO FACE Layer	REPLACEABLE MIDDLE Layer	OUTSIDE LAYER (FACING THE Environment)
Fiber	Comfortable, non-allergic, absorbent, can wash/dry in high heat with detergent/bleach	Low-absorbent	Any fiber that can wash/dry in high heat with detergent/ bleach
Yarn	High yarn count	High yarn count	High yarn count
Structure	Compact knit or woven, breathable	Compact, non-woven filter, breathable	Compact woven, breathable
Finish	If available, use moisture management (wicking) finish	If available, use anti-microbial finish	NA

Three-layer mask system considerations. Credit: Susan L. Sokolowski and Karen L. LaBat, <u>CC BY</u>

This three-layer system includes a space between the inner and outer layers for a removable middle layer. A replaceable "filter" is inserted in that space. If one fabric layer is too thin, add additional layers for protection.

Homemade masks will not filter the SARS-CoV-2, however, <u>masks</u> may prevent droplets and spray from transmitting between individuals. When wearing a mask, remember to continue social distancing, wash hands frequently and wipe down surfaces and packages.

This article is republished from <u>The Conversation</u> under a Creative Commons license. Read the <u>original article</u>.

Provided by The Conversation

Citation: Making masks at home – what you need to know about how to reduce the transmission of coronavirus (2020, April 16) retrieved 6 May 2024 from <u>https://medicalxpress.com/news/2020-04-masks-home-transmission-coronavirus.html</u>

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.