MicroRNAs may contribute to atherogenesis in a cell-type-dependent manner

MicroRNAs may contribute to atherogenesis in a cell-type-dependent manner
Researchers investigating the transcripts identified from GRO-Seq data in the UCSC genome browser. Early Stage Researcher Pierre Moreau in the front. Credit: University of Eastern Finland

Researchers at the University of Eastern Finland have uncovered potential mechanisms by which microRNAs (miRNA) drive atherogenesis in a cell-type-specific manner. Published in the Arteriosclerosis, Thrombosis, and Vascular Biology journal, the study provides novel insight into the miRNA profiles of the main cell types involved in atherosclerosis.

Atherosclerosis is the underlying cause of most cardiovascular diseases and one of the leading causes of mortality in the world. During atherosclerosis, arteries become progressively narrow and thick due to the formation of plaques containing cholesterol deposits, calcium and cells, among other components. Although the role and contribution to atherosclerosis of endothelial cells, smooth muscle cells and macrophages—the main associated with disease progression in the vascular wall—has been previously described, the leading to during atherosclerosis in these cell types remain unknown. In particular, the cell-type specific expression and regulation of miRNAs in the disease context has remained unexplored. MiRNAs represent one class of small non-coding RNAs that regulate the protein production by binding to messenger RNAs of protein encoding genes and this way affect cell function and .

In this study, by integrating different next generation sequencing techniques, the researchers have provided a deeper understanding of the miRNA changes in primary human endothelial cells, and macrophages under various pro-atherogenic stimuli, and discovered that the precursor forms of the miRNA (primary miRNAs) were highly expressed in a cell-type specific manner, suggesting distinct regulatory mechanisms on transcriptional level. In contrast, the large majority of mature miRNAs were common to all cell types and dominated by 2-5 abundant miRNA species. Moreover, the researchers uncovered microRNA-messenger RNA networks through which miRNAs could drive cell-type-specific responses. Given that miRNAs play an essential role in maintaining tissue homeostasis and can be dysregulated in pathological states, miRNA therapeutics that manipulate cellular miRNA levels are essential and have already entered clinical trials. Thus, these results are fundamental for the research community and could serve as the basis for future development of cell-targeted therapeutics.

More information: Pierre R. Moreau et al, Profiling of Primary and Mature miRNA Expression in Atherosclerosis Associated Cell Types, Arteriosclerosis, Thrombosis, and Vascular Biology (2021). DOI: 10.1161/ATVBAHA.121.315579

Citation: MicroRNAs may contribute to atherogenesis in a cell-type-dependent manner (2021, June 2) retrieved 26 February 2024 from https://medicalxpress.com/news/2021-06-micrornas-contribute-atherogenesis-cell-type-dependent-manner.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

How a microRNA protects vascular integrity


Feedback to editors