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Induction of neuronal assemblies in different regimes of excitation-inhibition
balance. (A) Schematic of conventional protocols for the induction and
investigation of plasticity often involving a small number of neurons and
perturbations with brief pulses. (B to D) Analytical steps (B) to evaluate the
effect of external perturbations on the formation of assemblies involving
dynamics of network responses (C) and network-wide plasticity (D). Knowing
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the weight matrix (W), input perturbations (δs) are transferred to output
perturbations (δr) (C); the resulting correlated activity patterns of pre- and
postsynaptic neurons (Σ), in turn, guide a network-wide plasticity of weights (D).
(E) Schematic of the perturbation protocol to study plasticity in large-scale
networks composed of excitatory (Exc) and inhibitory (Inh) neurons (top).
Connections between subpopulations are not shown. Bottom left: Np excitatory
neurons are perturbed with a series of stimulation pulses alternating between ON
and OFF states. Bottom right: The result of perturbations in terms of the
induction of assemblies is assayed by evaluating the potentiation of weights
within the perturbed ensemble of neurons (orange) as a result of Hebbian
learning (see Materials and Methods). (F) Parameterization of different regimes
in which neuronal assemblies are induced illustrating weak (k = 1; top) versus
strong (k > 1; bottom) E-I coupling regimes. JIE = ∣JEI∣ = ∣JII∣ = kJEE. (G)
Responses of NE excitatory and NI inhibitory neurons in a network with weak (k
= 1; top) or strong (k = 4; bottom) E-I coupling to perturbations (10 pulses with
Tp = 50, delivered to Np = 50 neurons, starting from T = 300). NE = NI = 500.
(H) Average normalized change in the activity (Δ activity) of different
subpopulations of neurons during induction relative to the baseline (BL). (I)
Matrix of the covariance of response changes after perturbations in (G) and (H).
Orange bars, perturbed ensembles. (J) Assembly formation is quantified by
ensemble potentiation (Ensemble pot.; see Materials and Methods, Eq. 6) for
different sizes of perturbed ensembles (Np) and temporal profiles (Tp). Credit: 
Science Advances, 10.1126/sciadv.abg8411

Neuronal assemblies are formed via the repetitive activation of
subpopulations of neurons to guide learning and behavior. Technical
advances have made it possible to artificially induce such assemblies,
although the method of optimizing the various parameters remain to be
identified. In a new report now published in Science Advances, Sadra
Sadeh and Claudia Clopath at the Bioengineering department of the
Imperial College London, U.K., studied this question in large-scale
cortical networks with excitatory-inhibitory (E-I) balance. They
identified the background network within which neuronal assemblies
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were embedded and how they strongly regulated their dynamics and
formation. While networks with dominant excitatory interactions
allowed the fast formation of neuronal assemblies, this process was
accompanied by the recruitment of non-perturbed neurons for non-
specific induction. Perturbation is a key technique in experimental
systems neuroscience and can assist researchers establish how given
neurons are causally related to a given behavior or to a succeeding
neuronal activity. The results of this work highlighted the presence of
two regions accompanying computational and cognitive tasks with speed
and specificity.

Understanding the brain by studying neuronal
assemblies

Neuronal assemblies or subgroups of interconnected, co-active neurons
are the building blocks of computation and learning in the brain. With
advancing technologies, scientists have gathered unprecedented tools to
interact with the circuitry to record and perturb the activity of neuronal
subpopulations and link their dynamic behavior. For instance,
experimentalists can artificially induce neuronal assemblies by targeting
the activation of a subset of cortical neurons and the efficient induction
can provide a powerful method to trigger or suppress a behavior to guide
the study of the human brain. Researchers aim to understand how the
parameters of stimulation and the activation of neurons during 
perturbation techniques can be optimized for efficient induction. To
study neuronal assemblies under biological conditions, researchers must
assess the complex interplay of network dynamics and plasticity. In this
work, Sadeh et al. studied how neuronal assemblies could be induced in
large-scale recurrent networks of excitatory and inhibitory neurons under
different conditions of perturbation. Using a theory developed recently
to analyze the effect of neuronal perturbations, the team asked how
activity changes resulting from different perturbations guided network-
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wide plasticity. In the first experimental step, they studied the transfer of
input perturbations to output responses and analyzed the correlated
activity patterns emerging from these responses to modify the neuronal
assemblies.

  
 

  

Transition from cooperative to suppressive regimes. (A) Average potentiation
(Avg. pot.) of individual synapses within the ensemble of perturbed neurons for
different ensemble sizes (Np) and temporal profiles of perturbation (Tp)
normalized to the maximum. (B) Values of average potentiation relative to the
average E-E weights in the network (wEE), compared with the theoretical values
obtained from linearized dynamics of the network based on its weight matrix
(theory W) and from the mean-field analysis (dashed line) (see Materials and
Methods for details). The results of simulations for larger Tp values converge to
the theoretical values inferred from W, which, in turn, match with the mean-
field analysis. Ensemble size is expressed as a fraction of total E neurons in the
network (Np/NE, where NE = 500). Other parameters are the same as Fig. 1.
Networks are in the weak E-I coupling regime (k = 1). (C) Average potentiation
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relative to wEE calculated from the mean-field analysis for different
combination of network E-E coupling (JEE = NE wEE) and the size of perturbed
ensembles as a fraction of the total size of the network (Np/NE). (D to F) Same
as (A) to (C) for perturbed ensembles in networks with strong E-I coupling (k =
4). The black line in (F) corresponds to previous simulations in (D) and (E) with
JEE = 2. White lines indicate the range of JEE estimated in mouse cortical
networks with the solid and dashed lines corresponding to the mode (JEE = 2.5)
and the median (JEE = 4.7) of the estimated values. Credit: Science Advances,
10.1126/sciadv.abg8411

 Inducing neuronal assemblies in excitatory inhibitory networks

The research team then investigated the formation of neuronal
assemblies by analyzing the different patterns of perturbations in large-
scale cortical network models with balanced excitation and inhibition.
Thereafter, they simulated the networks composed of these models using
random recurrent connectivity. Sadeh et al. characterized the induction
protocols based on key methods of the perturbations, including the
number of targeted neurons and properties of the stimulus. Next, they
simulated the response of the network before and after perturbations in
each regime to show the dominance of excitatory recurrent interactions
for non-perturbed excitatory neurons during weak excitation-inhibition
coupling. In contrast, nonperturbed excitatory neurons in networks with
strong excitatory-inhibitory coupling showed dominance of inhibitory
recurrent interactions, where both effects were stronger when increasing
the size of the perturbed ensemble in the study.

Transactions in cortical networks
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Specificity of assembly formation in different regimes of E/I balance. (A) The
outcome of induction can be nonspecific (left), if the within-assembly
potentiation of weights is accompanied by a substantial potentiation of
connections originating from outside the perturbed ensemble, or specific (right),
when the potentiation of weights remains constrained to the intended, perturbed
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ensemble. (B) Potentiation of presynaptic connections within the assembly
(orange) versus those from the assembly to outside (assemb.-to-out; gray), from
outside to the assembly (out-to-assemb.; black), and within the neurons outside
the assembly (out-to-out; gray dashed), respectively. Tp = 50 and induction is in
the weak E-I coupling regime (k = 1). Ensemble potentiation is calculated as the
average (across postsynaptic neurons) of the sum of connection weights from all
presynaptic sources (cf. Fig. 1J). For each Np, out-of-assembly potentiation is
calculated for 100 randomly selected pools of neurons other than, but with the
same size (Np) as, the perturbed neurons. Line and error bars show the average
and SD across the pools, respectively. (C) Ensemble specificity (Spec.)
quantifies the specificity of induced assemblies for different sizes of perturbed
neurons. It is calculated as (Ew – Eo)/(Ew + Eo), where Ew and Eo are the
average within- and out-of-assembly (assemb.-to-out) ensemble potentiation in
(B), respectively. Ensemble specificity drops for larger ensemble sizes, reflecting
the fact that within-assembly potentiation of weights is accompanied by a
substantial potentiation of connections from outside. (D and E) Same as (B) and
(C) for neuronal assemblies forming in networks with strong E-I coupling (k =
4). Out-of-assembly potentiation grows much slower than within-assembly
potentiation initially until the latter plateaus and starts to drop (D), leading to a
higher ensemble specificity for all ensemble sizes (E). Credit: Science Advances,
10.1126/sciadv.abg8411

To further understand the formation of assemblies in diverse regions,
Sadeh et al. studied how the average strength of individual synapses
changed as a function of parameters of perturbation. In the ensemble of
perturbed neurons, they plotted the average potentiation of synapses for
different regions and showed how cooperativity during the formation of
neuronal assemblies emerged in networks with weaker E-I (excitatory-
inhibitory) coupling. This changed to suppressive effects in networks
with stronger interactions. Pre-existing wiring in the network guided the
process and connections between neurons could be organized according
to their functional properties. Cortical networks could typically regulate
their activity after sensory deprivation such as injury or input
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deprivation, where neuronal assemblies were involved during 
subnetwork-specific recovery. To understand this process, Sadeh et a.
reduced the feedforward input to a compartment of neurons in the
network and studied how correlated external activation of a subset led to
recovery. The results showed how strong E-I (excitatory-inhibitory)
interactions shaped the formation of specific neuronal assemblies in the
network and their recovery consequent to input deprivation.

  
 

  

Growth of ensembles in networks with recurrent interaction of dynamics and
plasticity. (A) Closed-loop interaction of network dynamics and network
plasticity underlying the formation and growth of neuronal assemblies. Network
dynamics governed by the weight matrix (W) determines the input-output
responses to external perturbations, which, in turn, shape the structure of
covariances. Network plasticity (P) guided by the resulting covariance patterns
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determines the weight changes and updates, on a slower time scale, the weight
matrix, which, in turn, modifies the network dynamics. (B) Top: Spectral radius
of the network denoting the growth of the maximum eigenvalue of the weight
matrix (λ0) at different steps of weight update. To avoid instability of the
network dynamics (λ0 > 1), the learning is stopped before λ0 reaches a threshold
close to 1 (vertical dashed line). Bottom: Sample weight matrices of the
perturbed ensemble at different stages for networks in different E/I regimes. Np
= 20, Tp = 50; other parameters the same as in Fig. 2. (C) Evolution of the
spectral radius in different regimes. (D) Ensemble coupling (mean-field coupling
of the populations) within the perturbed ensemble (orange) and from neurons
outside the perturbed ensemble to the ensemble (gray) (cf. Fig. 3, B and D) at
different weight updates (dashed, k = 1; solid, k = 4). (E) Relative projection of
the eigenvector (v0) corresponding to the largest eigenvalue (λ0) of the network
over neurons within (orange) and outside (gray) the perturbed ensemble for
networks with k = 1 (dashed) and k = 4 (solid). It is calculated as the average real
part of the entries corresponding to perturbed and nonperturbed neurons
normalized by the maximum value for each regime. (F) Left: Distribution of the
real part of the largest eigenvector (v0) over excitatory neurons at the end of
learning. Dashed line, the average value (across excitatory neurons) of the initial
distribution before induction. Right: Average projection of the final eigenvector
over excitatory neurons within and outside the perturbed ensemble. Credit:
Science Advances, 10.1126/sciadv.abg8411

 Behavioral performances associated with neuronal assemblies

Neuronal assemblies are also associated with different stimuli to guide
and trigger behavior. Sadeh et al. next sought to understand how
neuronal assemblies formed in different E-I regions contributed to
behavioral performance by simulating the development of two neuronal
assemblies associated with distinct stimuli. Networks with weak E-I
coupling swiftly increased in recall strength to represent the capacity of
the network to detect the presence of a stimulus. Based on the outcomes,
neuronal assemblies amplified a weak stimulation of a small fraction of
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their neurons to provide a substrate for fast and strong recalls. In
networks with strong E-I coupling, the recall strength was comparatively
weaker, rising up more slowly. The results highlighted the slower
emergence of neuronal assemblies in inhibition-dominated regions,
while comparatively, the assemblies formed in weaker E-I regions were
fit for faster, yet more crude cognitive tasks. The researchers showed
how they can regulate different modes of learning by modulating the E-I
balance in the network via top-down mechanisms to provide a powerful
method. The team achieved different modes of learning and induction,
by generally modulating the network followed by studies on dynamic
transitions between different regions of excitatory-inhibitory (E-I)
plasticity to show how different plasticity rules shaped the dynamics of
learning in different manners.
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Dynamic transitions between different regimes of assembly formation. (A)
Schematic of a network with E-E and E-I plasticity before and after induction of
assemblies. (B) Final weight matrix of the network at the end of learning in the
network where both E-E and E-I weights are plastic (left) compared with the
condition where E-I plasticity is blocked and only E-E plasticity remains (right).
NE = NI = 400, Np = 100 (perturbed neurons #1 to 100). (C) Pattern completion
in networks with E-E and E-I plasticity (left) and only E-E plasticity (right) at the
end of learning. (D) Growth of the spectral radius (top), average projection of
the largest eigenvector over excitatory neurons (middle), and evolution of
ensemble coupling (bottom) in the networks with E-E and E-I plasticity (solid
lines) and when E-I plasticity is blocked (dashed lines). Credit: Science
Advances, 10.1126/sciadv.abg8411
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 Outlook

In this way, Sadra Sadeh and Claudia Clopath studied how different
patterns of perturbations induced neuronal assemblies in large-scale
networks with excitation-inhibition (E-I) balance. The work highlighted
the significance of studying the dynamics of neuronal networks and
network-wide plasticity to cast light to the formation of neuronal
assemblies. They credited the observed unexpected results to recurrent
interactions within networks of excitatory and inhibitory neurons. Since
behaviorally relevant learning was ultimately occurring in ensembles of
neurons embedded in large-scale recurrent networks, the team sought to
understand the impact of background on the formation of neuronal
assemblies and learning by developing a computational network.

  More information: Sadra Sadeh et al, Excitatory-inhibitory balance
modulates the formation and dynamics of neuronal assemblies in cortical
networks, Science Advances (2021). DOI: 10.1126/sciadv.abg8411 

Alan R. Mardinly et al, Precise multimodal optical control of neural
ensemble activity, Nature Neuroscience (2018). DOI:
10.1038/s41593-018-0139-8
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