
 

Artificial intelligence system predicts
consequences of gene modifications
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Geneformer, the new AI model developed by Theodoris and her colleagues, can
be used across many areas of biology and help discover possible drug targets for
disease. Credit: Gladstone Institutes

Researchers at Gladstone Institutes, the Broad Institute of MIT and
Harvard, and Dana-Farber Cancer Institute have turned to artificial
intelligence (AI) to help them understand how large networks of
interconnected human genes control the function of cells, and how
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disruptions in those networks cause disease.

Large language models, also known as foundation models, are AI
systems that learn fundamental knowledge from massive amounts of
general data, and then apply that knowledge to accomplish new tasks—a
process called transfer learning. These systems have recently gained
mainstream attention with the release of ChatGPT, a chatbot built on a
model from OpenAI.

In the new work, published in the journal Nature, Gladstone Assistant
Investigator Christina Theodoris, MD, Ph.D., developed a foundation
model for understanding how genes interact. The new model, dubbed
Geneformer, learns from massive amounts of data on gene interactions
from a broad range of human tissues and transfers this knowledge to
make predictions about how things might go wrong in disease.

Theodoris and her team used Geneformer to shed light on how heart
cells go awry in heart disease. This method, however, can tackle many
other cell types and diseases too.

"Geneformer has vast applications across many areas of biology,
including discovering possible drug targets for disease," says Theodoris,
who is also an assistant professor in the Department of Pediatrics at UC
San Francisco. "This approach will greatly advance our ability to design
network-correcting therapies in diseases where progress has been
obstructed by limited data."

Theodoris designed Geneformer during a postdoctoral fellowship with
X. Shirley Liu, Ph.D., former director of the Center for Functional
Cancer Epigenetics at Dana-Farber Cancer Institute, and Patrick Ellinor,
MD, Ph.D., director of the Cardiovascular Disease Initiative at the Broad
Institute—both authors of the new study.
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A network view

Many genes, when active, set off cascades of molecular activity that
trigger other genes to dial their activity up or down. Some of those
genes, in turn, impact other genes—or loop back and put the brakes on
the first gene. So, when a scientist sketches out the connections between
a few dozen related genes, the resulting network map often looks like a
tangled spiderweb.

If mapping out just a handful of genes in this way is messy, trying to
understand connections between all 20,000 genes in the human genome
is a formidable challenge. But such a massive network map would offer
researchers insight into how entire networks of genes change with
disease, and how to reverse those changes.

"If a drug targets a gene that is peripheral within the network, it might
have a small impact on how a cell functions or only manage the
symptoms of a disease," says Theodoris. "But by restoring the normal
levels of genes that play a central role in the network, you can treat the
underlying disease process and have a much larger impact."

Artificial intelligence 'transfer learning'

Typically, to map gene networks, researchers rely on huge datasets that
include many similar cells. They use a subset of AI systems, called
machine learning platforms, to work out patterns within the data. For
example, a machine learning algorithm could be trained on a large
number of samples from patients with and without heart disease, and
then learn the gene network patterns that differentiate diseased samples
from healthy ones.

However, standard machine learning models in biology are trained to

3/7



 

only accomplish a single task. In order for the models accomplish a
different task, they have to be retrained from scratch on new data. So, if
researchers from the first example now wanted to identify diseased
kidney, lung, or brain cells from their healthy counterparts, they'd need
to start over and train a new algorithm with data from those tissues.

The issue is that for some diseases, there isn't enough existing data to
train these machine learning models.

In the new study, Theodoris, Ellinor, and their colleagues tackled this
problem by leveraging a machine learning technique called "transfer
learning" to train Geneformer as a foundational model whose core
knowledge can be transferred to new tasks.

First, they "pre-trained" Geneformer to have a fundamental
understanding of how genes interact by feeding it data about the activity
level of genes in about 30 million cells from a broad range of human
tissues.

To demonstrate that the transfer learning approach was working, the
scientists then fine-tuned Geneformer to make predictions about the
connections between genes, or whether reducing the levels of certain
genes would cause disease. Geneformer was able to make these
predictions with much higher accuracy than alternative approaches
because of the fundamental knowledge it gained during the pretraining
process.

In addition, Geneformer was able to make accurate predictions even
when only shown a very small number of examples of relevant data.

"This means Geneformer could be applied to make predictions in
diseases where research progress has been slow because we don't have
access to sufficiently large datasets, such as rare diseases and those
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affecting tissues that are difficult to sample in the clinic," says
Theodoris.

Lessons for heart disease

Theodoris's team next set out to use transfer learning to advance
discoveries in heart disease. They first asked Geneformer to predict
which genes would have a detrimental effect on the development of
cardiomyocytes, the muscle cells in the heart.

Among the top genes identified by the model, many had already been
associated with heart disease.

"The fact that the model predicted genes that we already knew were
really important for heart disease gave us additional confidence that it
was able to make accurate predictions," says Theodoris.

However, other potentially important genes identified by Geneformer
had not been previously associated with heart disease, such as the gene
TEAD4. When the researchers removed TEAD4 from cardiomyocytes
in the lab, the cells were no longer able to beat as robustly as healthy
cells.

Therefore, Geneformer had used transfer learning to make a new
conclusion: Even though it had not been fed any information on cells
lacking TEAD4, it correctly predicted the important role that TEAD4
plays in cardiomyocyte function.

Finally, the group asked Geneformer to predict which genes should be
targeted to make diseased cardiomyocytes resemble healthy cells at a
gene network level. When the researchers tested two of the proposed
targets in cells affected by cardiomyopathy (a disease of the heart
muscle), they indeed found that removing the predicted genes using
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CRISPR gene editing technology restored the beating ability of diseased
cardiomyocytes.

"In the course of learning what a normal gene network looks like and
what a diseased gene network look like, Geneformer was able to figure
out what features can be targeted to switch between the healthy and
diseased states," says Theodoris. "The transfer learning approach allowed
us to overcome the challenge of limited patient data to efficiently
identify possible proteins to target with drugs in diseased cells."

"A benefit of using Geneformer was the ability to predict which genes
could help to switch cells between healthy and disease states," says
Ellinor. "We were able to validate these predictions in cardiomyocytes in
our laboratory at the Broad Institute."

The researchers are planning to expand the number and types of cells
that Geneformer has analyzed in order to keep boosting its ability to
analyze gene networks. They've also made the model open-source so that
other scientists can use it.

"With standard approaches, you have to retrain a model from scratch for
every new application," says Theodoris. "The really exciting thing about
our approach is that Geneformer's fundamental knowledge about gene
networks can now be transferred to answer many biological questions,
and we're looking forward to seeing what other people do with it."

  More information: Patrick Ellinor, Transfer learning enables
predictions in network biology, Nature (2023). DOI:
10.1038/s41586-023-06139-9. 
www.nature.com/articles/s41586-023-06139-9
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