This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

peer-reviewed publication

trusted source

proofread

Oxygen restriction helps fast-aging lab mice live longer

lab mouse
Credit: Pixabay/CC0 Public Domain

For the first time, researchers have shown that reduced oxygen intake, or "oxygen restriction," is associated with longer lifespan in lab mice, highlighting its anti-aging potential. Robert Rogers of Massachusetts General Hospital in Boston, US, and colleagues present these findings in a study published May 23rd in the open access journal PLOS Biology.

Research efforts to extend healthy lifespan have identified a number of chemical compounds and other interventions that show promising effects in mammalian lab animals— for instance, the drug metformin or . Oxygen restriction has also been linked to longer lifespan in yeast, nematodes, and fruit flies. However, its effects in mammals have been unknown.

To explore the anti-aging potential of oxygen restriction in mammals, Rogers and colleagues conducted lab experiments with mice bred to age more quickly than other mice while showing classic signs of mammalian aging throughout their bodies. The researchers compared the lifespans of mice living at normal atmospheric oxygen levels (about 21%) to the lifespans of mice that, at 4 weeks of age, had been moved to a living environment with a lower proportion of oxygen (11%—similar to that experienced at an altitude of 5000 meters).

They found that the mice in the oxygen-restricted environment lived about 50% longer than the mice in normal oxygen levels, with a median lifespan of 23.6 weeks compared to 15.7 weeks. The oxygen-restricted mice also had delayed onset of aging-associated neurological deficits.

Prior research has shown that dietary restriction extends the lifespan of the same kind of fast-aging mice used in this new study. Therefore, the researchers wondered if oxygen restriction extended their lifespan simply by causing the mice to eat more. However, they found that oxygen restriction did not affect food intake, suggesting other mechanisms were at play.

These findings support the anti-aging potential of oxygen restriction in mammals, perhaps including humans. However, extensive additional research will be needed to clarify its and illuminate the molecular mechanisms by which it operates.

Rogers adds, "We find that chronic continuous hypoxia (11% oxygen, equivalent to what would be experienced at Everest Base Camp) extends lifespan by 50% and delays the onset of neurologic debility in a mouse aging model. While is the most widely effective and well-studied intervention to increase and healthspan, this is the first time that ' restriction' has been demonstrated as beneficial in a mammalian aging model."

More information: Rogers RS, Wang H, Durham TJ, Stefely JA, Owiti NA, Markhard AL, et al. Hypoxia extends lifespan and neurological function in a mouse model of aging, PLoS Biology (2023). DOI: 10.1371/journal.pbio.3002117

Journal information: PLoS Biology
Citation: Oxygen restriction helps fast-aging lab mice live longer (2023, May 23) retrieved 23 April 2024 from https://medicalxpress.com/news/2023-05-oxygen-restriction-fast-aging-lab-mice.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Hypertension drug could be repurposed to delay aging, study finds

119 shares

Feedback to editors