Light therapy increases brain connectivity following injury, study finds

May 28 2024

Functional MRI brain maps of resting-state functional connectivity in representative age- and sex-matched participants. (A, B) Axial (top) and coronal (bottom) views show whole-brain connectivity, with the seed at the left (L) superior frontal region, in a 36-year-old female participant in the low-level light therapy (LLLT) treatment group (A) and a 38-year-old female participant in the sham treatment group (B) during the acute, subacute, and late-subacute phases (columns, from left to right, in both A and B) of traumatic brain injury recovery. (C) Axial (top left), coronal (bottom left), and sagittal (right) views in a 38-year-
old female control participant are shown for comparison; the solid green circle in
the sagittal view indicates the location of the left superior frontal seed region.
The color bar indicates that brain regions with warm colors (red, orange, yellow)
show resting-state fluctuations that have significant positive correlation (r of 0 to
1) with those of the left superior frontal region, and brain regions with cold
colors (blue) show resting-state fluctuations that have significant negative
correlation (r of -1 to 0) with those of the left superior frontal region. Brain
regions that have functional connectivity with the left superior frontal seed in the
LLLT-treated participant (arrowheads in A) but not in the sham-treated
participant (arrowheads in B) are shown. The arrow in A additionally shows
brain regions with positive correlation with the seed in the LLLT-treated
participant, but negative correlation with the seed in the sham-treated participant
(arrow in B). Credit: Radiological Society of North America (RSNA)

Low-level light therapy appears to affect healing in the brains of people
who suffered significant brain injuries, according to a study published in
Radiology.

Lights of different wavelengths have been studied for years for their
wound-healing properties. Researchers at Massachusetts General
Hospital (MGH) conducted low-level light therapy on 38 patients who
had suffered moderate traumatic brain injury, an injury to the head
serious enough to alter cognition and/or be visible on a brain scan.
Patients received light therapy within 72 hours of their injuries through a
helmet that emits near-infrared light.

"The skull is quite transparent to near-infrared light," said study co-lead
author Rajiv Gupta, M.D., Ph.D., from the Department of Radiology at
MGH. "Once you put the helmet on, your whole brain is bathing in this
light."

The researchers used an imaging technique called functional MRI to
gauge the effects of the light therapy. They focused on the brain's resting-
state functional connectivity, the communication between brain regions
that occurs when a person is at rest and not engaged in a specific task.
The researchers compared MRI results during three recovery phases: the
acute phase of within one week after injury, the subacute phase of two
to three weeks post-injury and the late-subacute phase of three months
after injury.

Of the 38 patients in the trial, 21 did not receive light therapy while
wearing the helmet. This was done to serve as a control to minimize bias
due to patient characteristics and to avoid potential placebo effects.

Patients who received low-level light therapy showed a greater change in
resting-state connectivity in seven brain region pairs during the acute-to-
subacute recovery phase compared to the control participants.

"There was increased connectivity in those receiving light treatment,
primarily within the first two weeks," said study co-author Nathaniel
Mercaldo, Ph.D., a statistician with MGH. "We were unable to detect
differences in connectivity between the two treatment groups long term,
so although the treatment appears to increase the brain connectivity
initially, its long-term effects are still to be determined."

The precise mechanism of the light therapy's effects on the brain is also
still to be determined. Previous research points to the alteration of an
enzyme in the cell's mitochondria (often referred to as the "powerhouse"
of a cell), Dr. Gupta said. This leads to more production of adenosine
triphosphate, a molecule that stores and transfers energy in the cells.
Light therapy has also been linked with blood vessel dilation and anti-
inflammatory effects.

"There is still a lot of work to be done to understand the exact
physiological mechanism behind these effects," said study co-author Suk-
tak Chan, Ph.D., a biomedical engineer at MGH.

While connectivity increased for the light therapy-treated patients during the acute to subacute phases, there was no evidence of a difference in clinical outcomes between the treated and control participants. Additional studies with larger cohorts of patients and correlative imaging beyond three months may help determine the therapeutic role of light in traumatic brain injury.

The researchers expect the role of light therapy to expand as more study results come in. The 810-nanometer-wavelength light used in the study is already employed in various therapeutic applications. It's safe, easy to administer and does not require surgery or medications. The helmet's portability means it can be delivered in settings outside of the hospital. It may have applications in treating many other neurological conditions, according to Dr. Gupta.

"There are lots of disorders of connectivity, mostly in psychiatry, where this intervention may have a role," he said. "PTSD, depression, autism: these are all promising areas for light therapy."

Provided by Radiological Society of North America
