Breath temperature test could identify lung cancer
8 September 2014

The temperature of exhaled breath could be used to diagnose lung cancer, according to a new study.

The research, presented at the European Respiratory Society (ERS) International Congress in Munich today (8 September 2013), suggests that testing the temperature of breath could be a simple and noninvasive method to either confirm or reject the presence of lung cancer.

Many research teams have been looking at the possibility of using breath tests for a number of cancers. This is the first study looking at breath temperature as a marker in lung cancer.

The researchers enrolled 82 people in the study who had been referred for a full diagnostic test after an x-ray suggested the presence of lung cancer. 40 patients received a positive diagnosis, while 42 patients had the diagnosis rejected. Researchers measured the temperature of exhaled breath in all patients using a breath thermometer device, known as an X-Halo device.

The results demonstrated that the patients with lung cancer had a higher breath temperature than those without. The temperature also increased with the number of years a person had smoked and the stage at which their lung cancer had developed.

The researchers also identified a cut-off value in the measurement of temperature, which they proved could identify lung cancer with a high level of accuracy.

Professor Giovanna Elisiana Carpagnano, lead author of the study from the University of Foggia, Italy, said: "Our results suggest that lung cancer causes an increase in the exhaled temperature. This is a significant finding and could change the way we currently diagnose the disease. If we are able to refine a test to diagnose lung cancer by measuring breath temperature, we will improve the diagnostic process by providing patients with a stress-free and simple test that is also cheaper and less intensive for clinicians."

More information: Abstract: Exhaled breath temperature in NSCLC: Could be a new non-invasive marker? Monday 8 September, 10.45-11.45

Provided by European Lung Foundation

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.