Protein modifications that point to cancer
28 August 2018

Researchers from the University of Zurich can, for the first time, precisely characterize the protein modification ADP-ribosylation for all proteins in a tissue sample. The changes, which are a typical reaction to stress, provide information about the condition of a cell. Together with the University Hospital Zurich, they are now testing the new method to diagnose and treat cancer.

Cells use different signals to react to stress and to inform other body cells. Triggers are, for example, cancer or inflammatory diseases. A central signaling pathway of stress response is the modification of proteins called ADP-ribosylation. Small molecules (ADP ribose) are added to precisely defined protein sites to control protein function.

Identifying diseases by modified proteins

The scientists suspect that these protein modifications are also involved in disease processes. Substances that block ADP-ribosylation act against certain forms of breast and ovarian cancer and can reduce inflammation. Since the changes in all proteins in a tissue sample can now be investigated at once, the modifications at selected protein positions can be investigated in healthy and sick individuals. Modified ADP-ribosylation patterns indicate a disease and allow conclusions to be drawn about therapeutic strategies.

New diagnostic and therapeutic possibilities

Michael Hottiger's group has also developed the first antibody that recognizes a mono-ADP-ribosylated protein. "Initial results in collaboration with the University Hospital Zurich (USZ) show that such antibodies could be used to predict the course of certain types of cancer," says Hottiger. The
researchers are currently developing additional antibodies against selected ADP-ribosylation sites that were discovered in the new study.

They also want to investigate whether such antibodies also have therapeutic potential – for example, against cancer. "We still have a lot to learn about ADP-ribosylation. But we are convinced that the medical benefits for cancer, infections and neurodegenerative diseases might be enormous," concludes Hottiger.


Provided by University of Zurich

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.