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Photo of a dummy BrainGate interface. Credit: Paul Wick/Wikimedia
Commons

Brain-computer interfaces, or BCIs, represent relatively recent advances
in neurotechnology that allow computer systems to interact directly with
human or animal brains. This technology is particularly promising for
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use in cases of spinal cord injury or paralysis. In these situations, patients
may be able to use neural decoders that access part of their brain to
operate a prosthetic limb or even to re-animate a paralyzed limb through
functional electrical stimulation (FES).

Michael A. Schwemmer and colleagues, in a recent Nature Medicine
article, detail their research on BCIs using deep neural network decoders
with a participant with tetraplegia due to spinal cord injury. Their
research focuses on addressing several key needs identified by end-users
of BCI systems, namely: high accuracy, minimal daily setup, rapid
response time, and multifunctionality—all of which are characteristics
heavily influenced by a BCI's particular neural decoding algorithm.

Schwemmer's group describes several different approaches to training
and testing three variations on neural network decoders (NN-BCI) in
comparison with each other and a benchmark support vector machine
(SVM) decoder. The four BCI decoder paradigms were developed and
tested over the course of several years in association with a 27-year-old
male participant with tetraplegia. The participant had a 96-channel
microelectrode array implanted in the area of his left primary motor
cortex corresponding to the hand and arm. Using intracortical data
collected from 80 sessions over 865 days, the investigators trained and
evaluated these BCI decoders. These sessions consisted of two
104-second blocks of a four-movement task: index extension, index
flexion, wrist extension, and wrist flexion.

The initial neural network (NN) model was developed and calibrated
using data from the first 40 sessions (80 blocks); it was not updated over
the second half of the training/testing period, and is referred to here as
the fixed neural network (fNN) model. From the fNN, two other neural
network models were created: a supervised updating (sNN) model and an
unsupervised updating (uNN) model. Both models used data from the
first block of the second 40-session (updating/testing) period. The sNN
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model's algorithm relies on explicit training labels, that is, known timing
and type of movement, whereas the uNN model relies on
undifferentiated or unknown direct input in relation to intended action of
the limb. The second block of the second 40-session period was used for
accuracy testing of all models—fNN, sNN, uNN, and SVM.

The purpose of using four separate models here was to test and
demonstrate various aspects of the three neural network models in
relation to each other and the benchmark SVM model. For instance, the
supervised neural network (sNN) model was updated daily (during the
first block of the second 40-session period) and compared directly with
the daily-retrained SVM model. The fixed neural network (fNN) model
was provided to demonstrate that a BCI could sustain accuracy for over a
year with no updates.

The unsupervised neural network (uNN) was perhaps the most
interesting comparator, as we shall see, because it attempted to combine
the improved accuracy gained from daily updates but without the
consequent daily setup time required by the sNN model. Accuracy was
the key performance measure in all tests, defined here as a percentage of
correctly predicted time-bins in the second block of the second 40
sessions; the criterion of greater than 90% accuracy was one of the four
end-user requirements originally articulated at the outset of the study.

The sNN consistently outperformed the daily-retrained SVM: in 37 out
of 40 sessions, its accuracy was > 90%, whereas the SVM only achieved
> 90% accuracy in 12 sessions. The fNN also outperformed the SVM in
36 of 40 sessions; it achieved > 90% accuracy in 32 sessions. The fNN
accuracy was, not surprisingly, lower than the accuracy of the sNN, and
both fixed decoders, fNN and SVM, declined in accuracy over the
course of the study period, in contrast to the daily-updated decoders.

Perhaps the most interesting finding of this research however, is the
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performance of the unsupervised neural network (uNN), which
outperformed both fixed models in terms of accuracy, while also
meeting the end-user requirement of minimal daily set-up. Where the
sNN model required explicit daily training, the uNN incorporated data
from general use in its update schema, which required no such daily set-
up. In comparison with the fNN, a performance gap emerged over time,
and the benefits of the uNN distinguished themselves. The uNN also
outperformed the SVM in terms of response time, another key end-user
requirement.

Another important aspect of this study with regard to NNs focused on
transfer learning, whereby new movements can be added to the existing
repertoire with minimal additional training and data. In this case, "hand
open" and "hand close" were added to the previous four movements, and
all decoders were rebuilt. Here too, unsupervised updating was used to
build an unsupervised transfer neural network (utNN), which, after only
one session of training oupterformed the SVM model.

Finally, the previous research—all of which was conducted in an
"offline" setting—was applied, via the participant's FES-controlled hand
and forearm, to show that a transfer learning uNN trained on the original
four-movement task could be used to quickly create a new decoder to
control, in real time, an open hand and three grips (can, fork, and peg).
In a test of the system, the participant was able to perform all three hand
movement grip tasks, with no failures, in 45 attempts. Previously, he was
only able to perform one grip task successfully.

In summarizing how the results of their study relate to the main end-user
expectations previously described, the investigators cite the following
achievements: "(i) using deep NNs to create robust neural decoders that
sustain high fidelity BCI control for more than a year without retraining;
(ii) introducing a new updating procedure that can improve performance
using data obtained through regular system use; (iii) extension of
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functionality through transfer learning using minimal additional data;
and (iv) introducing a decoding framework that simultaneously addresses
these four competing aspects of BCI performance (accuracy, speed,
longevity, and multifunctionality). In addition, we provide a clinical
demonstration that a decoder calibrated using historical data of imagined
hand movements with no feedback can be successfully used in real-time
to control FES-evoked grasp function for object manipulation."

Schwemmer and colleagues go on to offer a more in-depth discussion of
their results amidst the broader landscape of BCI research, and offer
commentary on some of the specific challenges and limitations of their
experiment. While noting that the median response time for uNN
decoders (0.9 s) is still faster than that of SVM decoders (1.1 s), they
acknowledge that a target of 750 ms or less is probably closer to realistic
end-user expectations.

Ultimately they conclude: "We have demonstrated that decoders based
on NNs may be superior to other implementations because new
functions can be easily added after the initial decoder calibration using
transfer learning. Crucially, we show that this secondary update to add
more movements requires a minimal amount of additional data." And
"insights gained from offline data and analyses can carry over to a
realistic online BCI scenario with minimal additional data collection."

  More information: Michael A. Schwemmer et al. Meeting
brain–computer interface user performance expectations using a deep
neural network decoding framework, Nature Medicine (2018). DOI:
10.1038/s41591-018-0171-y
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