Dry powder inhalation could be a potent tool in COVID-19 antiviral treatment

29 July 2020, by Nick Nobel

Remdesivir is authorized for emergency use in adult and pediatric patients hospitalized with severe disease. Originally developed to treat the Ebola virus disease, remdesivir has shown promising results treating COVID-19 in the human airway epithelial cells. However, limited effective delivery methods have hindered efforts to provide widespread treatment to a broad range of patients exhibiting life-threatening symptoms.

"Unfortunately, remdesivir is not suitable for oral delivery since the drug is mostly metabolized by the body," Williams said. "Intramuscular injection also faces challenges, since release rates from the muscles can vary widely."

To provide remdesivir for other patients beyond the most severely ill, more convenient and accessible dosage forms for different routes of administration must be quickly developed and tested so patients have more options to get treated. One way to overcome the poor absorption rates of remdesivir is to deliver it directly to the infection site. The research team, which includes Sawittree Sahakipijarn, Chaeho Moon and John J. Koleng, has developed inhaled forms of remdesivir for protecting and treating the respiratory mode of infection, including an amorphous brittle matrix powder made by thin-film freezing. Not only would this delivery method allow for wider distribution of an essential antiviral in the fight against COVID-19, it could also make remdesivir more effective.

"If patients can avoid a hospital visit to begin remdesivir treatment, it can lessen the current strains on our health system, lower cost and provide fewer points of contact with those who are still contagious," Williams said. "More widely available early stage intervention methods could significantly lesson symptoms before they become potentially life-threatening, providing more hospital beds and ventilators to those who need them the
TFF Pharmaceuticals Inc. has acquired the patents regarding thin-film freezing and inhalation. The UT researchers' findings were recently published as a preprint in bioRxiv. Upon final study results, the team will submit its full findings for peer review and publication.


Provided by University of Texas at Austin

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.