New stem cell model to study how cancer arises
7 August 2020, by Tabea Kemna

In an interdisciplinary study combining stem cell biology and tumor biology, researchers from Karolinska Institutet (as well as Uppsala and Lund University, together with researchers in Canada, Germany and France), have succeeded in creating a new type of stem cell model for studies on cancer of the brain. The study was recently published in *PNAS*.

"We have created a new type of model for medulloblastoma which is one of the most common forms of brain tumors that affect children. With current treatment, about 60% of the children affected survive," explains Margareta Wilhelm, researcher at the Department of Microbiology, Tumor and Cell Biology.

The treatment is often very tough and consists of surgery, radiation and chemotherapy, which can result in side effects in the form of cognitive problems, endocrine disorders, as well as increased incidence of secondary cancer later in life, which emphasizes the importance of developing effective treatments that do not harm the healthy part of the brain.

"In order to identify and test new treatments for this form of childhood cancer, we need to develop models that mimic the onset and growth of the disease," says Anna Falk, a researcher at the Department of Neuroscience.

"We have developed a model for medulloblastoma by reprogramming skin cells from Gorlin's syndrome patients who carry a hereditary mutation in the PTCH1 gene—one of the most common mutated genes in medulloblastoma—to become pluripotent stem cells and further to become neural stem cells, believed to be the cell of origin for medulloblastoma," Anna Falk says.

"We show that transplanted patient neural stem cells form tumors in the cerebellum of mice, while cells from healthy individuals cannot," says Margareta Wilhelm.

The tumors that are formed are similar to those developed in medulloblastoma patients and the researchers show that their model can be used to understand how the cancer starts and thereby find new therapy goals.


Provided by Karolinska Institutet