Oncology & Cancer

Immunotherapy and HDAC inhibition are anti-cancer besties

Immunotherapies have revolutionized the care of many cancers, teaching the body's own immune cells to recognize and attack tumor cells. Leading the way are drugs known as checkpoint inhibitors, which block a kind of "white ...

Oncology & Cancer

Expert discusses the deeper complexities of cancer

Geeta Mehta studies cancer not simply as masses of cells but as structured organs with multiple cell types that communicate with each other and interact with the body—much like your lungs or liver.

Medical research

Timed release of turmeric stops cancer cell growth

A Washington State University research team has developed a drug delivery system using curcumin, the main ingredient in the spice turmeric, that successfully inhibits bone cancer cells while promoting growth of healthy bone ...

Oncology & Cancer

Signature of an ineffective immune response to cancer revealed

Our immune system is programmed to destroy cancer cells. Sometimes it has trouble slowing disease progression because it doesn't act quickly or strongly enough. In a study published in The Journal of Clinical Investigation, ...

Oncology & Cancer

God doesn't play dice, does cancer?

The saying "God doesn't play dice" is meant to suggest that nothing happens by chance. On the other hand, cancer seems like the ultimate happenstance: Don't we all have a 43-year-old, vegan, triathlete friend fighting cancer? ...

Oncology & Cancer

Researchers to develop handheld device to diagnose skin cancer

Even the best dermatologists can't diagnose skin cancer by eye, relying on magnifying glasses to examine suspicious blemishes and scalpels to cut tissue for analysis. With up to more than 70 percent of biopsies coming back ...

page 1 from 23

Cancer

Cancer (medical term: malignant neoplasm) is a class of diseases in which a group of cells display uncontrolled growth (division beyond the normal limits), invasion (intrusion on and destruction of adjacent tissues), and sometimes metastasis (spread to other locations in the body via lymph or blood). These three malignant properties of cancers differentiate them from benign tumors, which are self-limited, and do not invade or metastasize. Most cancers form a tumor but some, like leukemia, do not. The branch of medicine concerned with the study, diagnosis, treatment, and prevention of cancer is oncology.

Cancer may affect people at all ages, even fetuses, but the risk for most varieties increases with age. Cancer causes about 13% of all human deaths. According to the American Cancer Society, 7.6 million people died from cancer in the world during 2007. Cancers can affect all animals.

Nearly all cancers are caused by abnormalities in the genetic material of the transformed cells. These abnormalities may be due to the effects of carcinogens, such as tobacco smoke, radiation, chemicals, or infectious agents. Other cancer-promoting genetic abnormalities may be randomly acquired through errors in DNA replication, or are inherited, and thus present in all cells from birth. The heritability of cancers are usually affected by complex interactions between carcinogens and the host's genome. New aspects of the genetics of cancer pathogenesis, such as DNA methylation, and microRNAs are increasingly recognized as important.

Genetic abnormalities found in cancer typically affect two general classes of genes. Cancer-promoting oncogenes are typically activated in cancer cells, giving those cells new properties, such as hyperactive growth and division, protection against programmed cell death, loss of respect for normal tissue boundaries, and the ability to become established in diverse tissue environments. Tumor suppressor genes are then inactivated in cancer cells, resulting in the loss of normal functions in those cells, such as accurate DNA replication, control over the cell cycle, orientation and adhesion within tissues, and interaction with protective cells of the immune system.

Diagnosis usually requires the histologic examination of a tissue biopsy specimen by a pathologist, although the initial indication of malignancy can be symptoms or radiographic imaging abnormalities. Most cancers can be treated and some cured, depending on the specific type, location, and stage. Once diagnosed, cancer is usually treated with a combination of surgery, chemotherapy and radiotherapy. As research develops, treatments are becoming more specific for different varieties of cancer. There has been significant progress in the development of targeted therapy drugs that act specifically on detectable molecular abnormalities in certain tumors, and which minimize damage to normal cells. The prognosis of cancer patients is most influenced by the type of cancer, as well as the stage, or extent of the disease. In addition, histologic grading and the presence of specific molecular markers can also be useful in establishing prognosis, as well as in determining individual treatments.

This text uses material from Wikipedia, licensed under CC BY-SA