Neuroscience

Brain's hippocampus helps fill in the blanks of language

A new study shows that when you finish your spouse's sentences or answer a fill-in-the-blank question, you're engaging the brain's relay station for memories, an area that until now was largely neglected by scientists studying ...

Neuroscience

Circuit for experience-informed decision-making ID'd in rats

How is the brain able to use past experiences to guide decision-making? A few years ago, researchers supported by the National Institutes of Health discovered in rats that awake mental replay of past experiences is critical ...

Neuroscience

What role does the hippocampus play in memory?

(Medical Xpress)—Meet the hippocampus: A seahorse-shaped structure in the cerebral cortex's medial temporal lobe, it's part of the limbic system, generally believed to be involved in spatial navigation and establishing ...

Neuroscience

Transcranial Magnetic Stimulation of brain boosts memory

Stimulating a particular region in the brain via non-invasive delivery of electrical current using magnetic pulses, called Transcranial Magnetic Stimulation, improves memory, reports a new Northwestern Medicine study.

page 1 from 23

Hippocampus

The hippocampus is a major component of the brains of humans and other mammals. It belongs to the limbic system and plays important roles in long-term memory and spatial navigation. Like the cerebral cortex, with which it is closely associated, it is a paired structure, with mirror-image halves in the left and right sides of the brain. In humans and other primates, the hippocampus is located inside the medial temporal lobe, beneath the cortical surface. Its curved shape reminded early anatomists of the horns of a ram (Cornu Ammonis), or a seahorse. The name, in fact, was taken by the sixteenth century anatomist Julius Caesar Aranzi from the Greek word for seahorse (Greek: ιππος, hippos = horse, καμπος, kampos = sea monster).

In Alzheimer's disease the hippocampus is one of the first regions of the brain to suffer damage; memory problems and disorientation appear among the first symptoms. Damage to the hippocampus can also result from oxygen starvation (hypoxia), encephalitis, or medial temporal lobe epilepsy. People with extensive hippocampal damage may experience amnesia—the inability to form or retain new memories.

In rodents, the hippocampus has been studied extensively as part of the brain system responsible for spatial memory and navigation. Many neurons in the rat and mouse hippocampus respond as place cells: that is, they fire bursts of action potentials when the animal passes through a specific part of its environment. Hippocampal place cells interact extensively with head direction cells, whose activity acts as an inertial compass, and with grid cells in the neighboring entorhinal cortex.

Because of its densely packed layers of neurons, the hippocampus has frequently been used as a model system for studying neurophysiology. The form of neural plasticity known as long-term potentiation (LTP) was first discovered to occur in the hippocampus and has often been studied in this structure. LTP is widely believed to be one of the main neural mechanisms by which memory is stored in the brain.

This text uses material from Wikipedia, licensed under CC BY-SA