Oncology & Cancer

How to shut down the power stations of cancer cells

An emerging nanomedicine cancer treatment involving the injection of tiny nanoparticles carrying compounds that can poison cancerous cells has many benefits. This so-called photodynamic therapy (PDT) is non-toxic and it doesn't ...

Medical research

Precision prevention for prostate cancer

The University of Delaware's Aditya Dutta and collaborators are investigating the NKX3.1 gene and its role in prostate cancer—the most common cancer and the second-leading cause of cancer-related death among men in the ...

Parkinson's & Movement disorders

Parkinson's disease: When molecular guardians need to be protected

Parkinson's disease is the second most common, age-related, neurodegenerative disease: In Germany alone, about 300,000 people are affected and experience sometimes major limitations to their quality of life. Although Parkinson's ...

Medical research

Diet suppresses or boosts mitochondria

Mitochondria are important cellular power plants whose diminished activity has been previously demonstrated to be associated with obesity by a group of researchers at the University of Helsinki. Now, in a new international ...

Diseases, Conditions, Syndromes

Platelets may play key role in development of lupus

Platelets may play a key role in the development of lupus, according to a study published today by researchers at Université Laval and CHU de Québec-Université Laval Research Center. Extracellular DNA circulating in the ...

Medical research

Novel principle for cancer treatment shows promising effect

Researchers at Karolinska Institutet in Sweden report in the journal Nature that they have developed novel first-in-class inhibitors that compromise mitochondrial function in cancer cells. Treatment with the inhibitors stopped ...

page 1 from 38

Mitochondrion

In cell biology, a mitochondrion (plural mitochondria) is a membrane-enclosed organelle found in most eukaryotic cells. These organelles range from 0.5–10 micrometers (μm) in diameter. Mitochondria are sometimes described as "cellular power plants" because they generate most of the cell's supply of adenosine triphosphate (ATP), used as a source of chemical energy. In addition to supplying cellular energy, mitochondria are involved in a range of other processes, such as signaling, cellular differentiation, cell death, as well as the control of the cell cycle and cell growth. Mitochondria have been implicated in several human diseases, including mitochondrial disorders and cardiac dysfunction, and may play a role in the aging process. The word mitochondrion comes from the Greek μίτος or mitos, thread + χονδρίον or khondrion, granule.

Several characteristics make mitochondria unique. The number of mitochondria in a cell varies widely by organism and tissue type. Many cells have only a single mitochondrion, whereas others can contain several thousand mitochondria. The organelle is composed of compartments that carry out specialized functions. These compartments or regions include the outer membrane, the intermembrane space, the inner membrane, and the cristae and matrix. Mitochondrial proteins vary depending on the tissue and the species. In humans, 615 distinct types of proteins have been identified from cardiac mitochondria; whereas in Murinae (rats), 940 proteins encoded by distinct genes have been reported. The mitochondrial proteome is thought to be dynamically regulated. Although most of a cell's DNA is contained in the cell nucleus, the mitochondrion has its own independent genome. Further, its DNA shows substantial similarity to bacterial genomes.

This text uses material from Wikipedia, licensed under CC BY-SA