We know we're full because a stretched intestine tells us so

We commonly think a full stomach is what tells us to stop eating, but it may be that a stretched intestine plays an even bigger role in making us feel sated, according to new laboratory research led by UC San Francisco neuroscientist ...


Scientists unpack how taste neurons control food intake

Using the common fruit fly as a model, a research team led by scientists at the University of California, Riverside, studied how taste neurons control feeding behaviors and found that flies genetically modified to have only ...


Atopic dermatitis: How allergens get on our nerves

Dry skin, pain, and itching... Atopic dermatitis affects the everyday lives of nearly 20% of children, and up to 5% of adults. The condition can have a significant impact on the quality of life of these patients.

page 1 from 23

Sensory neuron

Sensory neurons are neurons that are activated by sensory input (vision, touch, hearing, etc.), and send projections into the central nervous system that convey sensory information to the brain or spinal cord. Unlike neurons of the central nervous system, whose inputs come from other neurons, sensory neurons are activated by physical modalities such as light, sound, temperature, chemical stimulation, etc.

In complex organisms, sensory neurons relay their information to the central nervous system or in less complex organisms, such as the hydra, directly to motor neurons and sensory neurons also transmit information (electrical impulses) to the brain, where it can be further processed and acted upon. For example, olfactory sensory neurons make synapses with neurons of the olfactory bulb, where the sense of olfaction (smell) is processed.

At the molecular level, sensory receptors located on the cell membrane of sensory neurons are responsible for the conversion of stimuli into electrical impulses. The type of receptor employed by a given sensory neuron determines the type of stimulus it will be sensitive to. For example, neurons containing mechanoreceptors are sensitive to tactile stimuli, while olfactory receptors make a cell sensitive to odors.

This text uses material from Wikipedia, licensed under CC BY-SA