Neuroscience

Growing a cerebral tract in a microscale brain model

An international research team led by The University of Tokyo modeled the growth of cerebral tracts. Using neurons derived from stem cells, they grew cortical-like spheroids. In a microdevice, the spheroids extended bundles ...

Genetics

Rare genetic change provides clues to pancreas development

Researchers have discovered a key clue into the development of the pancreas and brain by studying rare patients born without a pancreas. The study from the Wellcome Sanger Institute, the University of Exeter and collaborators ...

Medical research

Study reveals factors behind embryonic stem cell state

Embryonic stem cells (ESC) have the ability to self-renew, and, being pluripotent have the potential to create almost any cell type in the body. The embryonic stem cell state is established and maintained by multiple regulatory ...

Diseases, Conditions, Syndromes

Scientists report new approach to reduce or prevent renal fibrosis

Renal fibrosis, the abnormal accumulation of fibrotic material within the kidney, hinders kidney function and may lead to eventual renal failure. Using genetically altered mice, researchers from Duke University investigated ...

Medical research

Researchers discover crucial link between brain and gut stem cells

The organs in our bodies house stem cells that are necessary to regenerate cells when they become damaged, diseased or too old to function. Researchers at Rutgers University have identified a new factor that is essential ...

Neuroscience

What happens in the bodies of ALS patients?

Amyotrophic lateral sclerosis (ALS) is an incurable disease of the central nervous system. In most cases, ALS is fatal within a short period following diagnosis. However, people sometimes live with the disease for decades, ...

page 1 from 23

Stem cell

Stem cells are cells found in most, if not all, multi-cellular organisms. They are characterized by the ability to renew themselves through mitotic cell division and differentiating into a diverse range of specialized cell types. Research in the stem cell field grew out of findings by Canadian scientists Ernest A. McCulloch and James E. Till in the 1960s. The two broad types of mammalian stem cells are: embryonic stem cells that are isolated from the inner cell mass of blastocysts, and adult stem cells that are found in adult tissues. In a developing embryo, stem cells can differentiate into all of the specialized embryonic tissues. In adult organisms, stem cells and progenitor cells act as a repair system for the body, replenishing specialized cells, but also maintain the normal turnover of regenerative organs, such as blood, skin or intestinal tissues.

Stem cells can now be grown and transformed into specialized cells with characteristics consistent with cells of various tissues such as muscles or nerves through cell culture. Highly plastic adult stem cells from a variety of sources, including umbilical cord blood and bone marrow, are routinely used in medical therapies. Embryonic cell lines and autologous embryonic stem cells generated through therapeutic cloning have also been proposed as promising candidates for future therapies.

This text uses material from Wikipedia, licensed under CC BY-SA