Medical research

Researchers create human airway stem cells from patients' cells

For the first time, researchers have successfully created airway basal stem cells in vitro from induced pluripotent stem cells by reprogramming blood cells taken from patients. Given that airway basal cells are defined as ...

Medical research

New therapeutic approach against leukemia

Leukemia frequently originates from the so-called leukemic stem cell, which resides in a tumor promoting and protecting niche within the bone marrow. Scientists from the Max Planck Institute of Biochemistry in Martinsried, ...

Diseases, Conditions, Syndromes

How herpes infection may impair human fetal brain development

Three cell-based models shed light on how herpes simplex virus type 1 (HSV-1) infection, which can spread to the fetal brain during pregnancy, may contribute to various neurodevelopmental disabilities and long-term neurological ...

Neuroscience

New research reveals why low oxygen damages the brain

Brain cell dysfunction in low oxygen is, surprisingly, caused by the very same responder system that is intended to be protective, according to a new published study by a team of researchers at the Case Western Reserve University ...

page 1 from 100

Stem cell

Stem cells are cells found in most, if not all, multi-cellular organisms. They are characterized by the ability to renew themselves through mitotic cell division and differentiating into a diverse range of specialized cell types. Research in the stem cell field grew out of findings by Canadian scientists Ernest A. McCulloch and James E. Till in the 1960s. The two broad types of mammalian stem cells are: embryonic stem cells that are isolated from the inner cell mass of blastocysts, and adult stem cells that are found in adult tissues. In a developing embryo, stem cells can differentiate into all of the specialized embryonic tissues. In adult organisms, stem cells and progenitor cells act as a repair system for the body, replenishing specialized cells, but also maintain the normal turnover of regenerative organs, such as blood, skin or intestinal tissues.

Stem cells can now be grown and transformed into specialized cells with characteristics consistent with cells of various tissues such as muscles or nerves through cell culture. Highly plastic adult stem cells from a variety of sources, including umbilical cord blood and bone marrow, are routinely used in medical therapies. Embryonic cell lines and autologous embryonic stem cells generated through therapeutic cloning have also been proposed as promising candidates for future therapies.

This text uses material from Wikipedia, licensed under CC BY-SA