Schematic representation of convolutional neural networks (CNNs) used in the deep learning algorithm for malignancy risk estimation of pulmonary nodules detected at low-dose screening CT. Given a CT image and the coordinate of the pulmonary nodule, a three-dimensional (3D) patch that was 50 mm in size and resampled to 64 pixels (px) in each direction was extracted around the nodule. For the two-dimensional (2D) CNN, nine different views were sectioned from the three-dimensional patch. Features were extracted with a ResNet50 CNN for each two-dimensional view, and the features were combined in a fully connected layer. For the three-dimensional CNN, the entire three-dimensional patch was fed as input to an Inceptionv1 three-dimensional CNN. Both architectures had a final layer that produced a continuous output. Finally, the outputs from the two-dimensional and three-dimensional CNNs were averaged in an ensemble to compute the pulmonary nodule malignancy risk between 0 and 1. Credit: Radiological Society of North America