By amplifying cell death signals, scientists make precancerous cells self-destruct

August 15, 2008

When a cell begins to multiply in a dangerously abnormal way, a series of death signals trigger it to self-destruct before it turns cancerous. Now, in research to appear in the August 15 issue of Genes & Development, Rockefeller University scientists have figured out a way in mice to amplify the signals that tell these precancerous cells to die. The trick: Inactivating a protein that normally helps cells to avoid self-destruction.

The work, led by Hermann Steller, Strang Professor and head of the Laboratory of Apoptosis and Cancer Biology, is the first to reveal the mechanism by which a class of proteins called IAPs regulates cell death. By exposing the mechanism in a living animal, the finding also marks a breakthrough in the field and opens the door for developing a new class of drugs that could aid in cancer therapy and prevention.

"In a way, these mice are guiding clinical trials," says Steller, who is also a Howard Hughes Medical Institute investigator. "We now can study how IAPs contribute to the development of cancer in a living animal and develop drugs to prevent or thwart the disease."

IAP stands for "inhibitor of apoptosis protein," and these proteins do exactly what their name implies. By inhibiting apoptosis, or programmed cell death, they keep cells alive by directly binding to executioner enzymes called caspases. But until now, precisely how IAPs save cells from death has remained unclear.

With graduate student Andrew Schile and postdoc Maria Garcia-Fernandez, Steller studied the X-linked inhibitor of apoptosis protein, or XIAP, and the role of its largely ignored RING domain, which has been implicated in promoting cell death as well as survival. Steller, Schile and Garcia-Fernandez found that genetically targeting and removing RING affected only some cell types in healthy mice. And even though the mice without the RING had more cell death than the mice with the RING, both lived normal lives under normal laboratory conditions.

But when the scientists compared mice that were genetically predisposed to developing cancer, they found that those without the RING lived twice as long as those with it.

"Cancer cells thrive by disabling the molecular machinery that tells sick cells to die," says Steller. "By removing the RING, we wanted to see whether we would trick the machinery to turn back on. And that's what happened. Cells die more readily, making it much more difficult for cancer to be established."

Steller and his team specifically showed that the RING transfers molecular tags on caspases that label these enzymes for destruction. The more tags, the stronger the signal to save the cell from death. However, when the RING is removed, fewer molecular tags are transferred to caspases and often, the signal to save the cell from death is not strong enough. So, more cells die.

The game is not over. Several distinct IAP genes are known to exist, but which ones are important in the development of cancer has also stymied researchers. "We need to use genetics to sort out which individual IAPs contribute to tumors and which IAPS we need to target in order to cure cancer," says Steller. "This was a very big step in understanding what role IAPs play in cancer, but it isn't the last."

Source: Rockefeller University

Explore further: Novel test enables earlier detection of Merkel cell carcinoma, scientists say

Related Stories

Protect against carbon monoxide as researchers hunt antidote

December 7, 2016

Scientists are on the trail of a potential antidote for carbon monoxide poisoning, an injected "scavenger" that promises to trap and remove the gas from blood within minutes. It's very early-stage research—but a reminder ...

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

TET proteins drive early neurogenesis

December 7, 2016

The fate of stem cells is determined by series of choices that sequentially narrow their available options until stem cells' offspring have found their station and purpose in the body. Their decisions are guided in part by ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.