August 14, 2017

This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:

Discovery of new prostate cancer biomarkers could improve precision therapy

Credit: Mayo Clinic
× close
Credit: Mayo Clinic

Mayo Clinic researchers have identified a new cause of treatment resistance in prostate cancer. Their discovery also suggests ways to improve prostate cancer therapy. The findings appear in Nature Medicine. In the publication, the authors explain the role of mutations within the SPOP gene on the development of resistance to one class of drugs. SPOP mutations are the most frequent genetic changes seen in primary prostate cancer. These mutations play a central role in the development of resistance to drugs called BET-inhibitors.

BET, bromodomain and extra-terminal domain, inhibitors are drugs that prevent the action of BET proteins. These proteins help guide the abnormal growth of cells.

As a therapy, BET-inhibitors are promising, but drug resistance often develops, says Haojie Huang, Ph.D., senior author and a molecular biologist within Mayo Clinic's Center for Biomedical Discovery. Prostate cancer is among the most diagnosed malignancies in the United States. It is also the third leading cause of cancer death in American men, according to the American Cancer Society. Because of this, says Dr. Huang, improving treatments for cancer is an important public health goal.

In the publication, the authors report SPOP mutations stabilize BET proteins against the action of BET-inhibitors. By this action, the mutations also promote cancer cell proliferation, invasion and survival.

"These findings have important implications for , because SPOP mutation or elevated BET protein expression can now be used as biomarkers to improve outcome of BET inhibitor-oriented therapy of prostate cancer with SPOP mutation or BET protein overexpression," says Dr. Huang. Mutations in the SPOP gene can then be used to guide administration of anti-cancer drugs in patients with prostate cancer:

Credit: Mayo Clinic
× close
Credit: Mayo Clinic

The Nature Medicine publication presents four major discoveries:

More information: Pingzhao Zhang et al. Intrinsic BET inhibitor resistance in SPOP-mutated prostate cancer is mediated by BET protein stabilization and AKT–mTORC1 activation, Nature Medicine (2017). DOI: 10.1038/nm.4379

Journal information: Nature Medicine

Provided by Mayo Clinic

Load comments (0)