April 5, 2018

This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:

Findings from breast and gynecological cancer study may have potential for future clinical applications

Researchers from The University of Texas MD Anderson Cancer Center have found a startling amount of new information about molecular features of tumors as well as identified previously unknown cancer subtypes based on a comprehensive analysis of 2,579 tumors from breast and four different types of gynecologic cancers. These new findings potentially could serve as a launching pad for future therapeutic studies.

Results from the multi-institutional effort, led by Rehan Akbani, Ph.D., associate professor of Bioinformatics & Computational Biology were published this week in the online issue of Cancer Cell.

The study is part of the Pan-Cancer Atlas, which has aimed to answer overarching questions about cancer by examining the full set of tumors available via The Cancer Genome Atlas (TCGA), a joint effort of the National Cancer Institute and the National Human Genome Research Institute. Akbani's investigation is one of several that conclude the Pan-Can Atlas and TCGA missions of mapping key genomic changes in an array of cancer types. "Our aims were to identify shared and unique molecular features, clinically significant subtypes and potential therapeutic targets," said Akbani. "We confirmed similarities previously identified in the five breast and gynecologic types and discovered intriguing molecular relationships not observed in previous studies of these diseases. A number of the observations have possible prognostic and/or therapeutic relevance, although any clinical possibilities illuminated by this study would require extensive additional research before they would be ready for practical application."

Key results of the study included:

"This study presents a broad-based, curated atlas of gynecologic and breast cancer molecular that we believe will be useful as a starting point for researchers in the field for many years to come," said Akbani.

John Weinstein, M.D., Ph.D., chair of Bioinformatics & Computational Biology, and a member of the research team added that "the study complements other integrative TCGA Pan-Cancer Atlas projects that have painted molecular portraits of about 11,000 patient tumors in 33 types."

Journal information: Cancer Cell

Load comments (0)